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Structures and Electrical Properties
of Ag–Tetracyanoquinodimethane
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Abstract—Ag–tetracyanoquinodimethane (Ag–TCNQ) nanos-
tructures are synthesized using both solution reaction in ace-
tonitrile and a novel vacuum-saturated vapor reaction method.
Experiments show that the latter synthesis method produces
Ag–TCNQ nanowires with better uniformity and higher aspect
ratio. These nanowires, having diameters around 100 nm and
lengths about 5 m, could serve as potential building blocks
of nanoscale electronics. Nanodevices based on these nanowires
are fabricated using the electron-beam lithography technique.
Electrical transport study shows reproducible – hysteresis
with a change in resistance of four orders of magnitude, demon-
strating electrical memory effect. This electrical bistability makes
Ag–TCNQ nanowires a promising candidate for future applica-
tions in ultrahigh-density information storage.

Index Terms—Electrical switching, hysteresis.

I. INTRODUCTION

THE TREND of miniaturization of electronics is greatly
accelerated by the discovery of new nanostructured

materials. Instead of using lithographic methods, these nano-
materials, such as carbon nanotubes and nanowires, can be
readily synthesized by the chemical vapor deposition method
[1], [2]. Also, efforts of using them as the building blocks
for nanoscale electronics and optoelectronics has achieved
significant progress [2]–[5]. For example, programmable logic
circuits [6], [7] and memory devices [8] based on carbon nan-
otube and semiconducting nanowires have been fabricated and
tested. However, nanostructures of charge-transfer complex
such as Cu–tetracyanoquinodimethane (TCNQ) and Ag–Tetra-
cyanoquinodimethane (TCNQ) have rarely been reported.
Because of their unique electrical properties, metal–TCNQ
complexes have attracted extensive attention since the 1970s
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Fig. 1. Morphology of Ag–TCNQ nanostructures synthesized by solution
reaction in acetonitrile. (a), (b) SEM images. (c) TEM image of a nano “twist.”

[9]. Electrical properties of their thin-film materials have been
previously studied [9]–[12], and their prospective application
as recording medium has been demonstrated [10].

In this paper, we report Ag–TCNQ nanostructures synthe-
sized by two methods, i.e., solution reaction in acetonitrile and
vacuum vapor reaction method. The Ag–TCNQ nanowire de-
vice is fabricated using nanolithography, and its electrical prop-
erty is characterized.

II. EXPERIMENT

A. Synthesis and Characterization of Ag–TCNQ Nanowires

Metal–TCNQ thin film had been reported to be synthesized
by dipping a metal plate into acetonitrile saturated with neutral
TCNQ [9]. Micrometer-sized metal–TCNQ crystals had been
achieved [11]. In our experiment, Ag–TCNQ nanostructures
were synthesized using a similar method except that we used an
Ag thin film instead of a metal plate. First, a 10-nm Ag film was
deposited on a silicon substrate by thermal evaporation
at 2 10 Pa. Then the Ag thin film was put into degassed
acetonitrile which had been saturated with neutral TCNQ
(98%, Aldrich). In this procedure, the following chemical
reaction took place [9]:

Ag TCNQ Ag-TCNQ

The sample was then taken out of the acetonitrile solution
after 10 min and TCNQ residue was washed away with clean
acetonitrile. A scanning electron microscopy (SEM) image [see
Fig. 1(a)] of the sample shows Ag–TCNQ nanowires with di-
ameters around 200 nm, which is much smaller than the size of
Ag–TCNQ microcrystallites [13]. With this synthesis method,
a unique twisted nanostructure of Ag–TCNQ is also obtained,
as shown in Fig. 1(b).
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Fig. 2. (a) SEM image of Ag–TCNQ nanowires grow vertically on the substrate with lengths of around 5 �m. (b) TEM image of a single Ag–TCNQ nanowire
with 80-nm diameter. (c) Raman spectrum of nanowires shows C-CN stretching mode shift.

Compared with dipping a metal plate into TCNQ saturated
acetonitrile solution, using Ag thin film resulted in a smaller
metal–TCNQ crystal structure. This could be attributed to the
fact that the thin film limits the amount of Ag needed in forming
a large Ag–TCNQ crystal.

Electrical bistability and memory effect of metal–TCNQ
[9]–[11] are the basis for implementing synthesized nanostruc-
tures into nanoscale electronics. However, solution reaction
synthesized Ag–TCNQ nanostructures do not show high unifor-
mity in the diameters, as illustrated in the transmission electron
microscopy (TEM) image [see Fig. 1(c)]. Therefore, a novel
vacuum vapor reaction synthesis method has been employed to
grow high-quality Ag–TCNQ nanowires. Such a method can
also be used to synthesize Cu–TCNQ nanowires.

Ag–TCNQ nanowires were synthesized following these pro-
cedures [12]. A 10-nm Ag thin film was deposited onto a sil-
icon substrate in a thermal evaporator under a base pres-
sure of 2 10 Pa. The Ag thin film was placed together with
15 mg of 7,7,8,8-tetracyanoquinodimethane (98%, Aldrich) in
a quartz tube (2.5-cm diameter, 15-cm length). The quartz tube
was then molten and sealed to enclose the substrate and TCNQ
after pumping down to 2.0 10 Pa. The sealed tube was then
heated up to 368 K in 5 min in a furnace and kept for 2 h in a fur-
nace. Finally, the substrate was taken out from the quartz tube

and baked at 373 K at 2.0 10 Pa pressure for 0.5 h to re-
move the TCNQ residue.

SEM and TEM were used to characterize the morphology of
Ag–TCNQ nanowires. An SEM image [see Fig. 2(a)] shows that
Ag–TCNQ nanowires have lengths of about 5 m and they are
grown more orderly on the substrate than those synthesized by
solution reaction [see Fig. 1(a)]. The TEM image [see Fig. 2(b)]
shows a uniform Ag–TCNQ nanowire with 80-nm diameter, in-
dicating an improvement on nanowire quality using the vacuum
vapor reaction synthesis method [see Fig. 1(c)]. Although
Ag–TCNQ is reported to have an orthorhombic unit cell with

, , and [13], a high-reso-
lution TEM study on nanowires does not show lattice fringe. It is
quite possible that a high-energy electron beam caused damage
on the local crystal structure of the nanowires during imaging. In
addition, experiments have shown that the thickness of the Ag
film has a significant effect on the nanowire’s morphology, i.e.,
thinner film results in a smaller diameter of nanowires. When
the thickness of the Ag film is greater than 200 nm, Ag–TCNQ
nanowires can hardly be obtained. We believe that the nanowire
synthesis is based on a vapor–liquid–solid mechanism, facili-
tated by the lower melting point of thinner films.

Raman spectrum of metal–TCNQ has often been utilized to
identify the chemical bonding between the metal atoms and
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Fig. 3. (a) SEM image of an Ag–TCNQ nanodevice. Electrodes A and B are
connected to the measurement circuit. (b) I–V hysteresis characteristics of the
nanodevice shows electrical switching and memory effect. The inset plot shows
a schematic of the measurement circuit.

TCNQ molecules [14], [15]. Fig. 2(c) shows a Raman spectrum
of as-grown Ag–TCNQ nanowires. The Raman bands at 1205
and 1610 cm are due to the C CH bending mode and the
C C ring stretching mode of TCNQ molecules, respectively.
Compared with the Raman spectrum of neutral TCNQ, C-CN
stretching mode shifts from 1451 to 1382 cm , showing evi-
dence for a full charge transfer between Ag and TCNQ [15].

B. Ag–TCNQ Nanowire Device Fabrication

Successful synthesis of high-quality Ag–TCNQ nanowires
could open up possibilities of utilizing them for nanoelectronics
applications. Nanodevices based on Ag–TCNQ nanowires were
fabricated in this study, and their electrical properties were
characterized. To obtain nanowire devices, the as-synthesized
nanowires with silicon substrate were first placed into isopropyl
alcohol and sonicated for 6 min to form nanowire suspen-
sion. Then the suspension was deposited onto another silicon
substrate which had predefined alignment marks. A high-mag-
nification optical microscope was used to locate the positions
of the nanowires, and their coordinates were calculated with
respect to the alignment marks. The contact electrode patterns
were then designed according to the coordinates. The resists
for electron-beam (ebeam) lithography were spin coated to the
substrate, followed by an exposure patterned by ebeam writer
(Jeol JBX-5D11) with electron energy of 50 keV. Exposed resist
was developed, and afterwards electrodes were metallized with
Au (110 nm) on top of Ti (20 nm) using an ebeam evaporator.
Finally, lift-off was done in acetone.

III. RESULTS AND DISCUSSION

An SEM image of a device is shown in Fig. 3(a). The
current–voltage – characteristics of Ag–TCNQ nanowire
were measured using a semiconductor parameter analyzer (Ag-
ilent 4156C) at room temperature. A 20-M load resistor
was placed in series with the sample to protect it from current
burst. A schematic of the measurement circuit is depicted in the
inset of Fig. 3(b).

– curves were obtained by sweeping up and down a dc
voltage, ranging from 0 to 8 V, applied between electrodes A
and B as indicated in Fig. 3(a). Fig. 3(b) shows the reproducible

– characteristics of the Ag–TCNQ nanowire. Similar elec-
trical behavior was also observed under reversed polarity. An

– hysteresis loop shows switching and memory effect.

Electrical switching indicates a transition from a high-resis-
tance state to a low-resistance state. The threshold voltage for
the resistance switching is 7.5 V, as shown in Fig. 3(b). Since
the length of the Ag–TCNQ nanowire between electrodes A and
B is 1 m, the threshold electric field is close to 10 V/m. In the
high-resistance state, the nanowire resistance is around 300 G
while it drops to 50 M in the low-resistance state. After sub-
tracting out the voltage drop on the 20-M load resistor, the
actual ON–OFF ratio for switching reaches 10 . Such electrical
switching behavior of the metal–TCNQ complex is explained
as an electric-field-induced reversible phase transition [9], [16].
This phase transition yields a partial neutral species of metal
and TCNQ from metal–TCNQ and forms conduction channels
in the material which substantially increases conductivity [16].

– characteristics also demonstrate electrical memory ef-
fect. As shown in Fig. 3(b), the resistance of the nanowire is
kept in the low-resistance state when the voltage is being swept
back to 0 V. If the high- and low-resistance states represent bi-
nary states “0” and “1,” respectively, Ag–TCNQ nanowires hold
promising application as an organic electrical memory mate-
rial due to the large resistance change between the “0” and “1”
states. If Ag–TCNQ nanowires are synthesized in precise orien-
tation and fabricated into highly integrated devices, information
storage density up to 10 b/cm can be potentially achieved.

IV. SUMMARY

Ag–TCNQ nanostructures have been successfully synthe-
sized by two methods of solution reaction in acetonitrile and
vacuum vapor reaction. Nanowires synthesized by vacuum
vapor reaction show better quality. SEM images show that
vacuum vapor reaction synthesized Ag–TCNQ nanowires have
diameters of around 100 nm and lengths of approximately
5 m. Nanodevices based on these nanowires are fabricated
using ebeam lithography followed by ebeam evaporation.
Electrical properties are characterized at room temperature.
Reproducible – hysteresis is obtained, which shows large
ON–OFF ratio electrical switching and electrical memory effect.
These unique electrical properties of Ag–TCNQ nanowires
demonstrate their promising applications in nanoelectronics,
especially in ultrahigh-density information storage.
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