Lagrange Duality

Daniel P. Palomar

Hong Kong University of Science and Technology (HKUST)

ELEC5470 - Convex Optimization

Fall 2017-18, HKUST, Hong Kong

Outline of Lecture

- Lagrangian
- Dual function
- Dual problem
- Weak and strong duality
- KKT conditions
- Summary

(Acknowledgement to Stephen Boyd for material for this lecture.)

Lagrangian

• Consider an optimization problem in standard form (not necessarily convex) minimize $f_0\left(x\right)$

subject to
$$f_i(x) \leq 0$$
 $i = 1, \dots, m$ $h_i(x) = 0$ $i = 1, \dots, p$

with variable $x \in \mathbf{R}^n$, domain \mathcal{D} , and optimal value p^* .

• The Lagrangian is a function $L: \mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$, with dom $L = \mathcal{D} \times \mathbf{R}^m \times \mathbf{R}^p$, defined as

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

where λ_i is the Lagrange multiplier associated with $f_i(x) \leq 0$ and ν_i is the Lagrange multiplier associated with $h_i(x) = 0$.

Lagrange Dual Function

• The Lagrange dual function is defined as the infimum of the Lagrangian over x: $g: \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$,

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$

$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

- Observe that:
 - the infimum is unconstrained (as opposed to the original constrained minimization problem)
 - -g is concave regardless of original problem (infimum of affine functions)
 - g can be $-\infty$ for some λ, ν

Lower bound property: if $\lambda \geq 0$, then $g(\lambda, \nu) \leq p^*$. **Proof.** Suppose \tilde{x} is feasible and $\lambda \geq 0$. Then,

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu).$$

Now choose minimizer of $f_0(\tilde{x})$ over all feasible \tilde{x} to get $p^* \geq g(\lambda, \nu)$.

• We could try to find the best lower bound by maximizing $g(\lambda, \nu)$. This is in fact the dual problem.

Dual Problem

• The Lagrange dual problem is defined as

- This problem finds the best lower bound on p^* obtained from the dual function.
- It is a convex optimization (maximization of a concave function and linear constraints).
- The optimal value is denoted d^{\star} .
- λ, ν are dual feasible if $\lambda \geq 0$ and $(\lambda, \nu) \in \text{dom } g$ (the latter implicit constraints can be made explicit in problem formulation).

Example: Least-Norm Solution of Linear Equations

Consider the problem

• The Lagrangian is

$$L(x,\nu) = x^{T}x + \nu^{T}(Ax - b).$$

• To find the dual function, we need to solve an unconstrained minimization of the Lagrangian. We set the gradient equal to zero

$$\nabla_x L(x,\nu) = 2x + A^T \nu = 0 \Longrightarrow x = -(1/2) A^T \nu$$

and we plug the solution in L to obtain g:

$$g(\nu) = L(-(1/2)A^{T}\nu, \nu) = -\frac{1}{4}\nu^{T}AA^{T}\nu - b^{T}\nu$$

- ullet The function g is, as expected, a concave function of ν .
- From the lower bound property, we have

$$p^{\star} \geq -\frac{1}{4}\nu^T A A^T \nu - b^T \nu \text{ for all } \nu.$$

The dual problem is the QP

maximize
$$-\frac{1}{4}\nu^T A A^T \nu - b^T \nu$$
.

Example: Standard Form LP

Consider the problem

$$\label{eq:continuous} \begin{array}{ll} \underset{x}{\text{minimize}} & c^T x \\ \text{subject to} & Ax = b, \quad x \geq 0. \end{array}$$

• The Lagrangian is

$$L(x,\lambda,\nu) = c^T x + \nu^T (Ax - b) - \lambda^T x$$
$$= (c + A^T \nu - \lambda)^T x - b^T \nu.$$

ullet L is a linear function of x and it is unbounded if the term multiplying x is nonzero.

Hence, the dual function is

$$g\left(\lambda,\nu\right)=\inf_{x}L\left(x,\lambda,\nu\right)=\left\{ \begin{array}{ll} -b^{T}\nu & c+A^{T}\nu-\lambda=0\\ -\infty & \text{otherwise.} \end{array} \right.$$

- The function g is a concave function of (λ, ν) as it is linear on an affine domain.
- From the lower bound property, we have

$$p^* \ge -b^T \nu$$
 if $c + A^T \nu \ge 0$.

The dual problem is the LP

$$\label{eq:constraint} \begin{array}{ll} \mbox{maximize} & -b^T \nu \\ \mbox{subject to} & c + A^T \nu \geq 0. \end{array}$$

Example: Two-Way Partitioning

Consider the problem

- It is a nonconvex problem (quadratic equality constraints). The feasible set contains 2^n discrete points.
- The Lagrangian is

$$L(x,\nu) = x^T W x + \sum_{i=1}^n \nu_i (x_i^2 - 1)$$
$$= x^T (W + \operatorname{diag}(\nu)) x - 1^T \nu.$$

• L is a quadratic function of x and it is unbounded if the matrix $W+\mathrm{diag}\,(\nu)$ has a negative eigenvalue.

• Hence, the dual function is

$$g\left(\nu\right)=\inf_{x}L\left(x,\nu\right)=\left\{ \begin{array}{ll} -1^{T}\nu & W+\operatorname{diag}\left(\nu\right)\succeq0\\ -\infty & \text{otherwise.} \end{array} \right.$$

From the lower bound property, we have

$$p^* \ge -1^T \nu$$
 if $W + \operatorname{diag}(\nu) \succeq 0$.

• As an example, if we choose $\nu = -\lambda_{\min}\left(W\right)1$, we get the bound $p^{\star} \geq n\lambda_{\min}\left(W\right).$

• The dual problem is the SDP

Weak and Strong Duality

- From the lower bound property, we know that $g(\lambda, \nu) \leq p^*$ for feasible (λ, ν) . In particular, for a (λ, ν) that solves the dual problem.
- \bullet Hence, $weak\ duality$ always holds (even for nonconvex problems):

$$d^{\star} \leq p^{\star}$$
.

- The difference $p^* d^*$ is called duality gap.
- Solving the dual problem may be used to find nontrivial lower bounds for difficult problems.

ullet Even more interesting is when equality is achieved in weak duality. This is called $strong\ duality$:

$$d^{\star} = p^{\star}$$
.

- Strong duality means that the duality gap is zero.
- Strong duality:
 - is very desirable (we can solve a difficult problem by solving the dual)
 - does not hold in general
 - usually holds for convex problems
 - conditions that guarantee strong duality in convex problems are called constraint qualifications.

Slater's Constraint Qualification

- Slater's constraint qualification is a very simple condition that is satisfied in most cases and ensures strong duality for convex problems.
- Strong duality holds for a convex problem

minimize
$$f_0\left(x\right)$$
 subject to $f_i\left(x\right) \leq 0$ $i=1,\ldots,m$ $Ax=b$

if it is strictly feasible, i.e.,

$$\exists x \in \text{int } \mathcal{D}: \quad f_i(x) < 0 \quad i = 1, \dots, m, \quad Ax = b.$$

- It can be relaxed by using relint \mathcal{D} (interior relative to affine hull) instead of int \mathcal{D} ; linear inequalities do not need to hold with strict inequality, ...
- There exist many other types of constraint qualifications.

Example: Inequality Form LP

Consider the problem

• The dual problem is

$$\label{eq:linear_equation} \begin{array}{ll} \text{maximize} & -b^T \lambda \\ \text{subject to} & A^T \lambda + c = 0, \quad \lambda \geq 0. \end{array}$$

- From Slater's condition: $p^* = d^*$ if $A\tilde{x} < b$ for some \tilde{x} .
- ullet In this case, in fact, $p^\star = d^\star$ except when primal and dual are infeasible.

Example: Convex QP

• Consider the problem (assume $P \succeq 0$)

• The dual problem is

- From Slater's condition: $p^* = d^*$ if $A\tilde{x} < b$ for some \tilde{x} .
- In this case, in fact, $p^* = d^*$ always.

Example: Nonconvex QP

Consider the problem

which is nonconvex in general as $A \not\succeq 0$.

• The dual problem is

$$\begin{array}{ll} \text{maximize} & -b^T \left(A + \lambda I \right)^\# b - \lambda \\ \text{subject to} & A + \lambda I \succeq 0 \\ & b \in \mathcal{R} \left(A + \lambda I \right) \end{array}$$

which can be rewritten as

• In this case, strong duality holds even though the original problem is nonconvex (not trivial).

Complementary Slackness

• Assume strong duality holds, x^\star is primal optimal and $(\lambda^\star, \nu^\star)$ is dual optimal. Then,

$$f_{0}(x^{*}) = g(\lambda^{*}, \nu^{*}) = \inf_{x} \left(f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x) \right)$$

$$\leq f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x^{*}) + \sum_{i=1}^{p} \nu_{i}^{*} h_{i}(x^{*})$$

$$\leq f_{0}(x^{*})$$

- Hence, the two inequalities must hold with equality. Implications:
 - x^* minimizes $L(x, \lambda^*, \nu^*)$
 - $-\lambda_i^{\star} f_i(x^{\star}) = 0$ for $i = 1, \dots, m$; this is called complementary slackness:

$$\lambda_i^{\star} > 0 \Longrightarrow f_i(x^{\star}) = 0, \qquad f_i(x^{\star}) < 0 \Longrightarrow \lambda_i^{\star} = 0.$$

Karush-Kuhn-Tucker (KKT) Conditions

KKT conditions (for differentiable f_i , h_i):

- 1. primal feasibility: $f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p$
- 2. dual feasibility: $\lambda \geq 0$
- 3. complementary slackness: $\lambda_{i}^{\star} f_{i}(x^{\star}) = 0 \text{ for } i = 1, \dots, m$
- 4. zero gradient of Lagrangian with respect to x:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

- We already known that if strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions.
- What about the opposite statement?
- If x, λ, ν satisfy the KKT conditions for a convex problem, then they are optimal.

Proof. From complementary slackness, $f_0\left(x\right) = L\left(x,\lambda,\nu\right)$ and, from 4th KKT condition and convexity, $g\left(\lambda,\nu\right) = L\left(x,\lambda,\nu\right)$. Hence, $f_0\left(x\right) = g\left(\lambda,\nu\right)$.

Theorem. If a problem is convex and Slater's condition is satisfied, then x is optimal if and only if there exists λ , ν that satisfy the KKT conditions.

Example: Waterfilling Solution

 Consider the maximization of the mutual information in a MIMO channel under Gaussian noise:

maximize
$$\log \det \left(\mathbf{R}_n + \mathbf{H} \mathbf{Q} \mathbf{H}^{\dagger} \right)$$
 subject to $\operatorname{Tr} \left(\mathbf{Q} \right) \leq P$ $\mathbf{Q} \succeq \mathbf{0}.$

- This problem is convex: the logdet function is concave, the trace constraint is just a linear constraint, and the positive semidefiniteness constraint is an LMI.
- Hence, we can use a general-purpose method such as an interior-point method to solve it in polynomial time.

 However, this problem admits a closed-form solution as can be derived from the KKT conditions.

The Lagrangian is

$$L(\mathbf{Q}; \mu, \mathbf{\Psi}) = -\log \det (\mathbf{R}_n + \mathbf{H}\mathbf{Q}\mathbf{H}^{\dagger}) + \mu (\mathsf{Tr}(\mathbf{Q}) - P) - \mathsf{Tr}(\mathbf{\Psi}\mathbf{Q}).$$

• The gradient of the Lagrangian is

$$\nabla_{\mathbf{Q}} L = -\mathbf{H}^{\dagger} \left(\mathbf{R}_n + \mathbf{H} \mathbf{Q} \mathbf{H}^{\dagger} \right)^{-1} \mathbf{H} + \mu \mathbf{I} - \mathbf{\Psi}.$$

The KKT conditions are

$$\operatorname{Tr}(\mathbf{Q}) \leq P, \quad \mathbf{Q} \succeq \mathbf{0}$$

$$\mu \geq 0, \quad \mathbf{\Psi} \succeq \mathbf{0}$$

$$\mathbf{H}^{\dagger} \left(\mathbf{R}_{n} + \mathbf{H} \mathbf{Q} \mathbf{H}^{\dagger} \right)^{-1} \mathbf{H} + \mathbf{\Psi} = \mu \mathbf{I}$$

$$\mu \left(\operatorname{Tr}(\mathbf{Q}) - P \right) = 0, \quad \mathbf{\Psi} \mathbf{Q} = \mathbf{0}.$$

• Can we find a **Q** that satisfies the KKT conditions (together with some dual variables)?

- First, let's simplify the KKT conditions by defining the so-called whitened channel: $\widetilde{\mathbf{H}} = \mathbf{R}_n^{-1/2} \mathbf{H}$.
- Then, the third KKT condition becomes:

$$\widetilde{\mathbf{H}}^{\dagger} \left(\mathbf{I} + \widetilde{\mathbf{H}} \mathbf{Q} \widetilde{\mathbf{H}}^{\dagger} \right)^{-1} \widetilde{\mathbf{H}} + \mathbf{\Psi} = \mu \mathbf{I}.$$

• To simplify even further, let's write the SVD of the channel matrix as $\widetilde{\mathbf{H}} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\dagger}$ (denote the eigenvalues σ_i), obtaining:

$$\mathbf{\Sigma}^{\dagger} \left(\mathbf{I} + \mathbf{\Sigma} \widetilde{\mathbf{Q}} \mathbf{\Sigma}^{\dagger} \right)^{-1} \mathbf{\Sigma} + \widetilde{\mathbf{\Psi}} = \mu \mathbf{I}.$$

where $\widetilde{\mathbf{Q}}=\mathbf{V}^{\dagger}\mathbf{Q}\mathbf{V}$ and $\widetilde{\mathbf{\Psi}}=\mathbf{V}^{\dagger}\mathbf{\Psi}\mathbf{V}$.

• The KKT conditions are:

$$\operatorname{Tr}(\widetilde{\mathbf{Q}}) \leq P, \quad \widetilde{\mathbf{Q}} \succeq \mathbf{0}$$

$$\mu \geq 0, \quad \widetilde{\boldsymbol{\Psi}} \succeq \mathbf{0}$$

$$\boldsymbol{\Sigma}^{\dagger} \left(\mathbf{I} + \boldsymbol{\Sigma} \widetilde{\mathbf{Q}} \boldsymbol{\Sigma}^{\dagger} \right)^{-1} \boldsymbol{\Sigma} + \widetilde{\boldsymbol{\Psi}} = \mu \mathbf{I}$$

$$\mu \left(\operatorname{Tr}(\widetilde{\mathbf{Q}}) - P \right) = 0, \quad \widetilde{\boldsymbol{\Psi}} \widetilde{\mathbf{Q}} = \mathbf{0}.$$

ullet At this point, we can make a guess: perhaps the optimal $\hat{f Q}$ and $\hat{m \Psi}$ are diagonal? Let's try ...

- Define $\widetilde{\mathbf{Q}} = \operatorname{diag}(\mathbf{p})$ (\mathbf{p} is the power allocation) and $\widetilde{\mathbf{\Psi}} = \operatorname{diag}(\boldsymbol{\psi})$.
- The KKT conditions become:

$$\sum_{i} p_{i} \leq P, \quad p_{i} \geq 0$$

$$\mu \geq 0, \quad \psi_{i} \geq 0$$

$$\frac{\sigma_{i}^{2}}{1 + \sigma_{i}^{2} p_{i}} + \psi_{i} = \mu$$

$$\mu \left(\sum_{i} p_{i} - P\right) = 0 \quad , \psi_{i} p_{i} = 0.$$

Let's now look into detail at the KKT conditions.

- First of all, observe that $\mu > 0$, otherwise we would have $\frac{\sigma_i^2}{1 + \sigma_i^2 p_i} + \psi_i = 0$ which cannot be satisfied.
- Let's distinguish two cases in the power allocation:

- if
$$p_i > 0$$
, then $\psi_i = 0 \Longrightarrow \frac{\sigma_i^2}{1 + \sigma_i^2 p_i} = \mu \Longrightarrow p_i = \mu^{-1} - 1/\sigma_i^2$ (also note that $\mu = \frac{\sigma_i^2}{1 + \sigma_i^2 p_i} < \sigma_i^2$)

- if $p_i=0$, then $\sigma_i^2 + \psi_i = \mu$ (note that $\mu=\sigma_i^2 + \psi_i \geq \sigma_i^2$.
- Equivalently,
 - if $\sigma_i^2 > \mu$, then $p_i = \mu^{-1} 1/\sigma_i^2$
 - if $\sigma_i^2 \leq \mu$, then $p_i = 0$.

ullet More compactly, we can write the well-known $waterfilling\ solution$:

$$p_i = (\mu^{-1} - 1/\sigma_i^2)^+$$

where μ^{-1} is called water-level and is chosen to satisfy $\sum_i p_i = P$ (so that all the KKT conditions are satisfied).

• Therefore, the optimal solution is given by

$$\mathbf{Q}^{\star} = \mathbf{V} \mathsf{diag}\left(\mathbf{p}\right) \mathbf{V}^{\dagger}$$

where

- the optimal transmit directions are matched to the channel matrix
- the optimal power allocation is the waterfilling.

Perturbation and Sensitivity Analysis

• Recall the original (unperturbed) optimization problem and its dual:

$$\begin{array}{lll} \underset{x}{\text{minimize}} & f_0\left(x\right) & \underset{\lambda,\nu}{\text{maximize}} & g\left(\lambda,\nu\right) \\ \text{subject to} & f_i\left(x\right) \leq 0 & \forall i & \text{subject to} & \lambda \geq 0 \\ & h_i\left(x\right) = 0 & \forall i & \end{array}$$

Define the perturbed problem and dual as

$$\begin{array}{lll} \underset{x}{\text{minimize}} & f_0\left(x\right) & \underset{\lambda,\nu}{\text{maximize}} & g\left(\lambda,\nu\right) - u^T\lambda - v^T\nu \\ \text{subject to} & f_i\left(x\right) \leq u_i & \forall i & \text{subject to} & \lambda \geq 0 \\ & h_i\left(x\right) = v_i & \forall i & \end{array}$$

- \bullet x is primal variable and u, v are parameters
- Define $p^{\star}(u,v)$ as the optimal value as a function of u, v.

• Global sensitivity: Suppose strong duality holds for unperturbed problem and λ^* , ν^* are dual optimal for unperturbed problem. Then, from weak duality:

$$p^{\star}(u,v) \geq g(\lambda^{\star}, \nu^{\star}) - u^{T}\lambda^{\star} - v^{T}\nu^{\star}$$
$$= p^{\star}(0,0) - u^{T}\lambda^{\star} - v^{T}\nu^{\star}$$

• Interpretation:

- if λ_i^{\star} large: p^{\star} increases a lot if we tighten constraint i ($u_i < 0$)
- if λ_i^{\star} small: p^{\star} does not decrease much if we loosen constraint i $(u_i > 0)$
- if ν_i^{\star} large and positive: p^{\star} increases a lot if we take $v_i < 0$
- if ν_i^{\star} large and negative: p^{\star} increases a lot if we take $v_i > 0$
- etc.

• **Local sensitivity**: Suppose strong duality holds for unperturbed problem, λ^*, ν^* are dual optimal for unperturbed problem, and $p^*(u, v)$ is differentiable at (0, 0). Then,

$$\frac{\partial p^{\star}(0,0)}{\partial u_{i}} = -\lambda_{i}^{\star}, \qquad \frac{\partial p^{\star}(0,0)}{\partial v_{i}} = -\nu_{i}^{\star}$$

Proof. (for λ_i^*) From the global sensitivity result, we have

$$\frac{\partial p^{\star}\left(0,0\right)}{\partial u_{i}} = \lim_{\epsilon \downarrow 0} \frac{p^{\star}\left(te_{i},0\right) - p^{\star}\left(0,0\right)}{t} \ge \lim_{\epsilon \downarrow 0} \frac{-t\lambda_{i}^{\star}}{t} = -\lambda_{i}^{\star}$$

$$\frac{\partial p^{\star}(0,0)}{\partial u_{i}} = \lim_{\epsilon \uparrow 0} \frac{p^{\star}(te_{i},0) - p^{\star}(0,0)}{t} \le \lim_{\epsilon \uparrow 0} \frac{-t\lambda_{i}^{\star}}{t} = -\lambda_{i}^{\star}.$$

Hence, the equality.

Duality and Problem Reformulations

- Equivalent formulations of a problem can lead to very different duals.
- Reformulating the primal problem can be useful when the dual is difficult to derive or uninteresting.
- Common tricks:
 - introduce new variables and equality constraints
 - make explicit constraints implicit or vice-versa
 - transform objective or constraint functions (e.g., replace $f_0(x)$ by $\phi(f_0(x))$ with ϕ convex and increasing).

Example: Introducing New Variables

Consider the problem

$$\underset{x}{\mathsf{minimize}} \quad \|Ax - b\|_{2}.$$

• We can rewrite it as

$$\label{eq:subject_to} \begin{aligned} \min_{x,y} & \|y\|_2 \\ \text{subject to} & y = Ax - b. \end{aligned}$$

We can then derive the dual problem:

$$\label{eq:bound} \begin{array}{ll} \text{maximize} & b^T \nu \\ \text{subject to} & A^T \nu = 0, \quad \|\nu\|_2 \leq 1. \end{array}$$

Example: Implicit Constraints

Consider the following LP with box constrains:

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & -\mathbf{1} \leq x \leq \mathbf{1} \end{array}$$

The dual problem is

$$\label{eq:linear_equation} \begin{array}{ll} \underset{\nu,\lambda_1,\lambda_2}{\text{maximize}} & -b^T\nu - \mathbf{1}^T\lambda_1 - \mathbf{1}^T\lambda_2 \\ \text{subject to} & c + A^T\nu + \lambda_1 - \lambda_2 = 0 \\ & \lambda_1 \geq 0, \quad \lambda_2 \geq 0, \end{array}$$

which does not give much insight.

• If, instead, we rewrite the primal problem as

minimize
$$f_0\left(x\right) = \left\{ \begin{array}{ll} c^Tx & -\mathbf{1} \leq x \leq \mathbf{1} \\ \infty & \text{otherwise} \end{array} \right.$$
 subject to
$$Ax = b$$

then the dual becomes way more insightful:

Duality for Problems with Generalized Inequalities

• The Lagrange duality can be naturally extended to generalized inequalities of the form

$$f_i(x) \preceq_{K_i} 0$$

where \leq_{K_i} is a generalized inequality on \mathbf{R}^{k_i} with respect to the cone K_i .

The corresponding dual variable has to satisfy

$$\lambda_i \succeq_{K_i^*} 0$$

where K_i^* is the dual cone of K_i .

Semidefinite Programming (SDP)

• Consider the following SDP $(F_i, G \in \mathbf{R}^{k \times k})$:

minimize
$$c^T x$$
 subject to $x_1 F_1 + \cdots + x_n F_n \preceq G$.

ullet The Lagrange multiplier is a matrix $\Psi \in \mathbf{R}^{k imes k}$ and the Lagrangian

$$L(x, \Psi) = c^T x + \text{Tr} \left(\Psi \left(x_1 F_1 + \dots + x_n F_n - G \right) \right)$$

The dual problem is

$$\begin{array}{ll} \text{maximize} & -\text{Tr}\left(\Psi G\right) \\ \text{subject to} & \text{Tr}\left(\Psi F_i\right) + c_i = 0, \ i = 1, \ldots, n \\ & \Psi \succeq 0. \end{array}$$

Summary

- We have introduced the Lagrange duality theory: Lagrangian, dual function, and dual problem.
- We have developed the optimality conditions for convex problems: the KKT conditions.
- We have illustrated the used of the KKT conditions to find the closed-form solution to a problem.
- We have overviewed some additional concepts such as duals of reformulations of problems, sensitivity analysis, generalized inequalities, and SDP.

References

Chapter 5 of

• Stephen Boyd and Lieven Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge University Press, 2004.

http://www.stanford.edu/~boyd/cvxbook/