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Lagrangian
e Consider an optimization problem in standard form (not necessarily

COnVGX) minimize fo (x)
X

subject to  f; (z) <

hi(z) =0  i=1,....p

with variable £ € R", domain D, and optimal value p*

e The Lagrangian is a function L : R" x R™ x RP — R, with
dom L =D x R™ x RP, defined as

L(x,\v)= —l—Z)\fZ —I—Zuz-hi(x)
i=1

where )\; is the Lagrange multiplier associated with f; (z) < 0 and
v; is the Lagrange multiplier associated with h; (x) = 0.

Daniel P. Palomar




Lagrange Dual Function

e The Lagrange dual function is defined as the infimum of the
Lagrangian over z: g : R™ X R — R,
g(\v) = infL(xz,\v)

xeD

B a;lg%c) (fo (z) + Z Aifi () + Z Vil (x))

e Observe that:
— the infimum is unconstrained (as opposed to the original con-
strained minimization problem)
— g is concave regardless of original problem (infimum of affine
functions)
— g can be —oo for some A, v
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Lower bound property: if A > 0, then g (\,v) < p*.
Proof. Suppose 7 is feasible and A > 0. Then,

fo(@)>L(z,\v)> in;‘)L(:C,)\,V) =g(\v).
Te

Now choose minimizer of fy () over all feasible Z to get p* > g (A, v). O

e We could try to find the best lower bound by maximizing g (A, v).
This is in fact the dual problem.
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Dual Problem

e The Lagrange dual problem is defined as

ma>><\imize g\ v)

subject to A > 0.

e This problem finds the best lower bound on p* obtained from the
dual function.

e It is a convex optimization (maximization of a concave function and
linear constraints).

e The optimal value is denoted d*.

e )\ v are dual feasible if A > 0 and (\,v) € dom g (the latter implicit
constraints can be made explicit in problem formulation).
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Example: Least-Norm Solution of Linear Equations

e Consider the problem

minimize
T

subject to Ax =0b.

e The Lagrangian is

L(z,v)=a'z4+v! (Az —b).

e To find the dual function, we need to solve an unconstrained
minimization of the Lagrangian. We set the gradient equal to zero

Vol (z,v) =20+ AT =0=2=—(1/2) A'v
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and we plug the solution in L to obtain g:

g(w)=L(—(1/2)A"v,v) = —iVTAATV —bly

e The function g is, as expected, a concave function of v.

e From the lower bound property, we have

1
p* > —ZVTAATV — by for all v.

e The dual problem is the QP

maximize —iVTAATV — vy
1%
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Example: Standard Form LP

e Consider the problem

minimize clx
€T

subjectto Ax=0b, x>0.

e The Lagrangian is

L(z,\v) = clo+vi(Az—b) - N2
= (c+ATV—)\)T:E—bTV.

e L is a linear function of x and it is unbounded if the term multiplying
X 1S nonzero.
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e Hence, the dual function is

—bly c+ ATy —\X=0
—00 otherwise.

g\ v)=inf L (x,\,v)= {
e The function g is a concave function of (\,v) as it is linear on an

affine domain.

e From the lower bound property, we have

p*> by ife+ Aty >0.

e [he dual problem is the LP

maximize  —bly
14

subject to ¢+ Afv > 0.
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Example: Two-Way Partitioning

e Consider the problem
minimize ! Wgx

X
subjectto 2?=1, i=1,...,n.

1

e It is a nonconvex problem (quadratic equality constraints). The
feasible set contains 2™ discrete points.

e The Lagrangian is
L(x,v)

CCTW$—|—ZVZ' (ZU? — 1)
i=1
= o' (W +diag(v))z — 1" v.

e [ is a quadratic function of x and it is unbounded if the matrix
W + diag (v) has a negative eigenvalue.
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e Hence, the dual function is

g(y):infL(x,y):{

T

—11y W +diag (v) = 0
—00 otherwise.

e From the lower bound property, we have

p* > -1y if W + diag (v) = 0.

e As an example, if we choose v =

—Amin (W) 1, we get the bound

p* Z n)\min (W) .

e The dual problem is the SDP

maximize —
1

1T

vV

subject to W +diag(v) = 0.
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Weak and Strong Duality

e From the lower bound property, we know that g (\,v) < p* for
feasible (A,v). In particular, for a (A, v) that solves the dual
problem.

e Hence, weak duality always holds (even for nonconvex problems):

d* < p~.

e The difference p* — d* is called duality gap.

e Solving the dual problem may be used to find nontrivial lower bounds
for difficult problems.
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e Even more interesting is when equality is achieved in weak duality.
This is called strong duality:

d* = p*.

e Strong duality means that the duality gap is zero.

e Strong duality:

— is very desirable (we can solve a difficult problem by solving the
dual)

— does not hold in general

— usually holds for convex problems

— conditions that guarantee strong duality in convex problems are
called constraint qualifications.
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Slater’s Constraint Qualification

e Slater's constraint qualification is a very simple condition that
is satisfied in most cases and ensures strong duality for convex
problems.

e Strong duality holds for a convex problem

minimize  fy ()
subject to  f; (z) <0 1=1,...,m
Az =b

iIf it is strictly feasible, i.e.,

JreintD:  fi(z)<0 i=1,...,m, Azx="0.
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e |t can be relaxed by using relintD (interior relative to affine hull)
instead of intD; linear inequalities do not need to hold with strict
inequality, ...

e There exist many other types of constraint qualifications.
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Example: Inequality Form LP

e Consider the problem

minimize cly
€T

subject to Ax <b.

e The dual problem is

maximize  —bT'\
A

subject to ATA+c=0, \>0.

e From Slater’s condition: p* = d* if Ax < b for some x.

e In this case, in fact, p* = d* except when primal and dual are
infeasible.
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Example: Convex QP
e Consider the problem (assume P > 0)

minimize 1 Py
T

subject to Az <b.

e [he dual problem is

maximize  — (1/4) NTAPLATX — b1\

subject to A > 0.

e From Slater’s condition: p* = d* if Ax < b for some .

e In this case, in fact, p* = d* always.
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Example: Nonconvex QP

e Consider the problem

minimize L' Ax + 201 x
X
subject to 'z <1

which is nonconvex in general as A % 0.

e [he dual problem is

maximize b (A + A7 b — A

subjectto A+ A >0
be R(A+ A)
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which can be rewritten as

maximize —t — A\
£
subject to [ A Z_T)\[ [Z ] ~ 0.

e In this case, strong duality holds even though the original problem
is nonconvex (not trivial).
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Complementary Slackness

e Assume strong duality holds, =* is primal optimal and (\*,v*) is
dual optimal. Then,

fo(x™) =g (X", v") = mf ( ) + Z AL fi () + Z v h; (x))
i=1
< Jo(z¥)+ Z ALfi (@) + ) vihi(x
i=1 i=1

< fo(z")
e Hence, the two inequalities must hold with equality. Implications:
— o™ minimizes L (x, \*, V")
- A fi(x*) = 0 for i = 1,...,m; this is called complementary
slackness:
Ar > 0= f;(z") =0, fi(x®) < 0= AT =0.
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Karush-Kuhn-Tucker (KKT) Conditions

KKT conditions (for differentiable f;, h;):

1. primal feasibility: f; () <0,¢=1,...,m, h;(x)=0,1=1,...

2. dual feasibility: A >0
3. complementary slackness: X\ f; (z*) =0fori=1,...,m

4. zero gradient of Lagrangian with respect to x:

1=1 1=1

» P
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e \We already known that if strong duality holds and x, A, v are optimal,
then they must satisfy the KKT conditions.

e What about the opposite statement?

o If x, \, v satisfy the KKT conditions for a convex problem, then they
are optimal.

Proof. From complementary slackness, fy(z) = L (x,\,v) and, from 4th KKT
condition and convexity, g (\,v) = L (x, A, ). Hence, fo () = g (A, v). O

Theorem. If a problem is convex and Slater’s condition is satisfied,
then x is optimal if and only if there exists \, v that satisfy the KKT
conditions.
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Example: Waterfilling Solution

e Consider the maximization of the mutual information in a MIMO
channel under Gaussian noise:

max(igmize log det (Rn + HQHT)

subject to Tr(Q) < P
Q=0

e This problem is convex: the logdet function is concave, the trace
constraint is just a linear constraint, and the positive semidefiniteness
constraint is an LMI.

e Hence, we can use a general-purpose method such as an interior-
point method to solve it in polynomial time.
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e However, this problem admits a closed-form solution as can be
derived from the KKT conditions.

e The Lagrangian is

L(Q;u, ¥) = —logdet (R, + HQH")+u (Tr (Q) — P)-Tr (¥Q).

e The gradient of the Lagrangian is

Vol = —H' (R, + HQH')  H + uI — .
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e [he KKT conditions are

TTr(Q) <P, Q = 0

p=0, ¥ = 0

H' (R, +HQH) H+¥ = uI
p(Tr(Q)— P)=0, ¥Q = 0.

e Can we find a Q that satisfies the KKT conditions (together with
some dual variables)?
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e First, let's simplify the KKT conditions by defining the so-called
whitened channel: H = R;UQH.

e [hen, the third KKT condition becomes:
N o N—1
Ty (I + HQHT) H ¥ = ul

e To simplify even further, let's write the SVD of the channel matrix
as H = UXVT (denote the eigenvalues o;), obtaining:

~ —1 ~
s (I+2Q2T) >4+ @ =l

where Q = VIQV and ¥ = VIOV
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e [he KKT conditions are:

Q) <P, Q = 0
u>0, ¥ = 0

~ —1 ~
ET(HEQET) S+ = ul
,u(Tr(C))—P):O, JQ = 0.

e At this point, we can make a guess: perhaps the optimal (5 and ¥
are diagonal? Let's try ...
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e Define Q = diag (p) (p is the power allocation) and ¥ = diag ().

e [he KKT conditions become:

2

o

) +h; =
T+ oo, P H

M(ZMP)O ,ipi = 0.

e Let's now look into detail at the KKT conditions.
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e First of all, observe that i > 0, otherwise we would have +

; = 0 which cannot be satisfied.

O'.
1—|—<7Z i

e Let's distinguish two cases in the power allocation:

2
1"‘0' 12

2
note that u = 14:22}9. < o?)

— if p; =0, then 7 + 1; = p (note that u = o7 +1; > o7,

— if p;, >0, then ¢, =0 = =u=p;=p ' —1/c? (also

e Equivalently,

—ifo? > p, thenp;=p~ 1t —1/0?
— if 07 < p, then p; = 0.
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e More compactly, we can write the well-known waterfilling solution:

pi=(ut=1/02)"

where ! is called water-level and is chosen to satisfy >.:pi=2P
(so that all the KKT conditions are satisfied).

e Therefore, the optimal solution is given by

Q* = Vdiag (p) V!

where

— the optimal transmit directions are matched to the channel matrix
— the optimal power allocation is the waterfilling.
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Perturbation and Sensitivity Analysis

e Recall the original (unperturbed) optimization problem and its dual:

minimize  fo (x) ma>§\imize g\, v)
subject to  fi(z) <0 Vi subject to A >0

e Define the perturbed problem and dual as

minimize  fy (x) ma>§\imize g\ v)—ul'X—vly
subject to  f; (z) ,

1IN

u; Vi subjectto A >0
U;

e 1 is primal variable and u, v are parameters

e Define p* (u,v) as the optimal value as a function of u, v.
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e Global sensitivity: Suppose strong duality holds for unperturbed
problem and A\*, v* are dual optimal for unperturbed problem. Then,

from weak duality:

g ()\*7 V*) o UT)\* . UTV*

= p*(0,0) —u' A\ —ol*

[V

p* (u,v)

e Interpretation:

— if A¥ large: p* increases a lot if we tighten constraint 7 (u; < 0)

— if A7 small: p* does not decrease much if we loosen constraint i
(ui > O)

— if 7 large and positive: p* increases a lot if we take v; < 0

— if v} large and negative: p* increases a lot if we take v; > 0

— etc.
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e Local sensitivity: Suppose strong duality holds for unperturbed
problem, A\*,v* are dual optimal for unperturbed problem, and
p* (u,v) is differentiable at (0,0). Then,

op* (0,0)
8u7;

_ Op (O’O):—y*

(9?)7; '

Proof. (for A\})From the global sensitivity result, we have

ap* (07 O) p* (te% O) — p* (07 O) . _tA: _

= lim > lim = —\}
(9’&7; el0 t el0 t
* * 79 —p* ) . —tAT
9" (0,0) — lim 2 (te:, 0) = p" (0,0) < lim L= )%
(9’&7; eT0 t eT0 t
Hence, the equality. O
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Duality and Problem Reformulations

e Equivalent formulations of a problem can lead to very different duals.

e Reformulating the primal problem can be useful when the dual is
difficult to derive or uninteresting.

e Common tricks:

— introduce new variables and equality constraints

— make explicit constraints implicit or vice-versa

— transform objective or constraint functions (e.g., replace fy (z) by
¢ (fo (z)) with ¢ convex and increasing).
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Example: Introducing New Variables

e Consider the problem

minimize  ||Az —b||,.
€T

e \We can rewrite it as

minimize ||y,

Y

subject to y = Az —b.

e \We can then derive the dual problem:

maximize by
1%

subject to  A'v =0, |v|,<1.
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Example: Implicit Constraints

e Consider the following LP with box constrains:

minimize cl'y
€T

subject to Ax =0
—1<zx<1

e The dual problem is

maximize —blv—1TX =11,
V,A1,A2

subject to c+ ATv 4+ A — X2 =0
)\1 > 07 )‘2 > 07

which does not give much insight.
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e If, instead, we rewrite the primal problem as

cl'x —1<z<1

T 0O otherwise

minimize  fo (z) = {

subject to Ax =0b
then the dual becomes way more insightful:

maximize —bly — HATV + cHl
1%
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Duality for Problems with Generalized Inequalities

e The Lagrange duality can be naturally extended to generalized
inequalities of the form

fi(z) 2k, O

where <. is a generalized inequality on R*: with respect to the
cone K.

e The corresponding dual variable has to satisfy
Ai =k 0

where K is the dual cone of Kj.

Daniel P. Palomar 38



Semidefinite Programming (SDP)
e Consider the following SDP (F;, G € R**%):.

minimize clx
€T

subject to x1F1+---+2,F, XG.

e The Lagrange multiplier is a matrix ¥ € R¥** and the Lagrangian

Lz, V) =cla+Tr(V (z1Fi+ - +z,F, — G))

e [he dual problem is

max\ipmize —Tr (V@A)

subject to Tr(VF;)4+c¢;=0,i=1,...,n
U > 0.
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Summary

e \We have introduced the Lagrange duality theory: Lagrangian, dual
function, and dual problem.

e \We have developed the optimality conditions for convex problems:
the KKT conditions.

e We have illustrated the used of the KKT conditions to find the
closed-form solution to a problem.

e \We have overviewed some additional concepts such as duals of refor-

mulations of problems, sensitivity analysis, generalized inequalities,
and SDP.
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