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Abstract—Adaptive beamforming methods are known to not present in training data [1]. In this case, several rapidly
degrade if some of underlying assumptions on the environment, converging techniques have been developed [1]-[5] that are ap-

sources, or sensor array become violated. In particular, if the pjicapie to problems with small training sample size. Although
desired signal is present in training snapshots, the adaptive

array performance may be quite sensitive even to slight mis- .the assumption of signal-free training snapshots may b,e tr_ue
matches between the presumed and actual signal steering vectorsin SOme areas (such as radar), there are numerous applications
(spatial signatures). Such mismatches can occur as a result ofwhere the observations are always “contaminated” by the signal
environmental nonstationarities, look direction errors, imperfect component. Such applications, for example, include mobile

array calibration, distorted antenna shape, as well as distortions .y njcations, passive source location, microphone array
caused by medium inhomogeneities, near—far mismatch, source

spreading, and local scattering. The similar type of performance speech processing, mEd'Ca_l imaging, and radio a;tronomy. l_t IS
degradation can occur when the signal steering vector is known Well known that even in the ideal case where the signal steering
exactly but the training sample size is small. vector is exactly known, the presence of the signal of interest
In this paper, we develop a new approach to robust adaptive in training data cell may dramatically reduce the convergence
beamforming in the presence of an arbitrary unknown signal  ratag of adaptive beamforming algorithms as compared with the
steering vector mismatch. Our approach is based on the opti- . I-f trainina dat 61 Thi bstantial
mization of worst-case performance. It turns out that the natural signal- re_e raining data case [6]. This may cguse asubs ap 1a
formulation of this adaptive beamforming problem involves degradation of the performance of adaptive beamforming
minimization of a quadratic function subject to infinitely many  techniques in situations of small training sample size.
nonconvex quadratic constraints. We show that this (originally ~ When adaptive arrays are applied to practical problems, the
intractable) problem can be reformulated in a convex form a}s'the performance degradation of adaptive beamforming techniques
so-called second-order cone (SOC) program and solved efficiently b d than in the af ti d
(in polynomial time) using the well-established interior point may ecome even more pronounce. anin e.aoremen 'One_
method. It is also shown that the proposed technique can be in- ideal case because some of underlying assumptions on the envi-
terpreted in terms of diagonal loading where the optimal value of ronment, sources, or sensor array can be violated and this may
the diagonal loading factor is computed based on the known level cause a mismatch between the nominal (presumed) and actual
of uncertainty of the signal steering vector. Computer simulations i steering vectors. Adaptive array techniques are known to
with several frequently encountered types of signal steering vector b it to sliaht mi tch f ht that
mismatches show better performance of our robust beamformer e \{ery sens! ve evgn OS_ '9 X mismatches of such type tha Ca_n
as compared with existing adaptive beamforming algorithms. easily occur in practical situations as a consequence of look di-
. . : . rection and signal pointing errors [7 rimperf rr [-
Index Terms—Optimal diagonal loading, robust adaptive .SCttp a ddsdg ta tpc()j t tg erro i[ ] [89] OOthpe ectarray ca
beamforming, second-order cone programming, signal mismatch ibration an . IStor g antenna shape [ 1 .er Common causes
problem, worst-case performance optimization. of model mismatch include array manifold mlsmOde“ng dueto
source wavefront distortions resulting from environmental inho-
mogeneities [10], [11], near—far problem [12], source spreading
and local scattering [13]-[16], as well as other effects [17]. In
N recent decades, adaptive beamforming has been widelich cases, robust approaches to adaptive beamforming are re-
used in wireless communications, microphone array speeghired [17]-[19].
processing, radar, sonar, medical imaging, radio astronomyThere are several existing approaches to robust adaptive
and other areas. A traditional approach to the design of adaptieamforming. The most common is the so-called linearly
beamformers assumes that the desired signal componentscarstrained minimum variance (LCMV) beamformer, which
provides robustness against uncertainty in the signal look
, _ _ direction. Recently, several other techniques addressing this
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Several other approaches are known to be able to partly over- [I. BACKGROUND

come the problem of arbitrary steering vector mismatches. The’l’he output of a narrowband beamformer is given by
most popular of them are the quadratically constrained beam-

former (whose implementation is based on the so-callad- y(k) = whz(k)

onal loadingof the sample covariance matrix [4], [18], [20])

and the eigenspace-based beamformer [6], [21]. However, thieere k is the time indexx(k) = [z1(k),...,zx(k)]T €
main shortcoming of the former approach is that it is not cle&@ > is the complex vector of array observations,
how to obtain the optimal value of the diagonal loading factav = [wy,...,wy]T € CM*! is the complex vector of

based on the known level of uncertainty of the signal steeribbgamformer weights)/ is the number of array sensors, and
vector, whereas the latter approach is essentially ineffective(af’ and(-)? stand for the transpose and Hermitian transpose,
low signal-to-noise ratios (SNRs) and when the dimension afspectively. The observation (training snapshot) vector is
the signal-plus-interference subspace is highhis, unfortu- given by
nately, makes it difficult to apply the eigenspace-based beam-
former to wireless communications where the dimension of the z(k) =s(k) +i(k) + n(k)
signal-plus-interference subspace may be uncertain and rela- =s(k)a+i(k) + n(k) 1)
tively high due to the effects of signal local scattering [13]-[16].

In this paper (also see [22]-[24]), we develop a new powerfiiheres(k), i(k), andn(k) are the desired signal, interference,
approach to robust adaptive beamforming in the presencedd noise components, respectively. Hes;) is the signal
an arbitrary unknown steering vector mismatch. Our approa@@veform, and: is the signal steering vector. The weight vector
is based on the optimization of worst-case performance.Cn be found from the maximum of the signal-to-interference-
turns out that the natural formulation of this problem involveBlus-noise ratio (SINR) [3]
minimization of a quadratic function subject to infinitely many
nonconvex quadratic constraints and therefore is NP2htard SINR =
solve. However, we show that this robust adaptive beamforming
problem can be reformulated as a convex second-order c@yigere
(SOC) program and solved efficiently (in polynomial time)
via the well-established interior point method (see [27]-[29]). R.,,=F {(i(k) +n(k)) (i(k) + n(k))H} (3)
This result is somewhat surprising from the optimization
theory standpoint and is based on a procedure that transfoifnhe M x M interference-plus-noise covariance matrix, and
a semi-infinite nonconvex quadratically constrained home= is the signal power. It is easy to find the solution for the
geneous quadratic minimization problem to a convex SO&gight vector by maintaining a distortionless response toward
program. We show that our beamformer can be interpreted a$@ desired signal and minimizing the output interference-plus-
diagonal loading approagtin which the optimal value of the noise power [5]. Hence, the maximization of (2) is equivalent to
diagonal loading factor is computed based on the known upgel
bound on the norm of the signal steering vector mismatch.

Computer simulations with several frequently encountered
types of signal steering vector mismatches show a visible perfor- ) .
mance gain of the proposed beamformer over other traditiondP™ (4)' the fpllowmg well-known solution can be found for
and robust adaptive beamforming techniques. the optimal weight vector [S]:

Our paper is organized as follows. Some background of adap-
tive beamforming is presented in Section II, where several pop-

o |lwfal|?
2 lw™al @

wHR;  ,w

Hlllli}n w’ R w subjectto  wa=1. 4)

wope = R a (5)

forma_nce. Then, we establis_h the diagongl loading based intF‘erf'erred to as the minimum variance distortionless response
pretation of our robust adaptive beamforming problem and co, VDR) beamformer [5], [30]

vert it to a convex SOC problem that can be efficiently solve

using the well-established interior point algorithms. Section I\,

presents our simulation results where the performance of

proposed method is compared with the existing algorithms In

situations with different types of the signal steering vector mis- . 1 "

match. Section V contains our concluding remarks. R= N Z z(n)z” (n) (6)
n=1

In practical applications, the exact interference-plus-noise co-
riance matrixR; ., is unavailable. Therefore, the sample co-
iance matrix

IAdditionally, this dimension must be exactly known in this technique.  is used instead of (3) (see [1]). Heré is the number of training

2n optimization theory, NP-hard problems represent a class of extremely difnapshots (also termed tniaining sample sizeIn this case, (4)
ficult problems that have no known polynom|al-t|me'soll.mons [25]. should be rewritten as

3Very recently, another robust worst-case optimization-based beamformer
(which also belongs to the class of diagonal loading techniques) has been
independently formulated; see [26].

Il:ll‘i]Il w” Rw subjectto  wfa=1. @)
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The solution to this problem is commonly referred to as thEhe main problem of the LSMI method is how to chose the
sample matrix inversion (SMI) algorithm, whose weiqht vectatiagonal loading factog. Cox et al. [18] proposed to use the
(after omitting the immaterial constant = 1/aR "a) is SO-calledvhite noise gain constraint obtain reasonable values

given by [1] of this parameter. Unfortunately, it is not clear how to relate the
. parameters of the white noise gain constraint and the level of
wsyi= R a. (8) uncertainty of the signal steering vector. Furthermore, the rela-

hen the sianal ) i th o tionship between the diagonal loading factor and the parameters
When the signal component is present in the training data Cgfle white noise gain constraint is not simple, and to satisfy this

(cf. (1)), the use of the sample covariance matrix (6) in place traint, a multistep iterative procedure is required to adjust

of the true interference-plus-noise covariance matrix (3) affeGis, jiagonal loading factor [18]. Each step of this iterative pro-

the perfqrmance of the-SMI algorithm dramancally [6]. I,t IS Welboqure involves an update of the inverse of the diagonally loaded

k”PV_V“ since the classic paper [11 thatin the case of ,S'gnal'fregvariance matrix, and as a result, the total computational com-

training samples, the use of weight vector (8) provides rapifieit of adaptive beamforming with the white noise gain con-

convergence of the output SINR to its optimal value straint may be higher than that of the SMI algorithm. Because

SINR,y¢ = 02 aHRi—+1na © of this, the diagonal loading factor is usuglly chosgn in a more
ad hocway, typically about 162, whereo? is the noise power

so that the average performance losses relative to (9) are liesa single sensor.

than 3 dB if N > 2M. However, this is no longer true if the Another popular approach to robust adaptive beamforming

training snapshots are “contaminated” by the signal componeint.the general case of an arbitrary mismatch is the so-called

It was shown in [6] that in the latter case the convergence to @penspace-based beamformer [6], [21] whose key idea is to use,

becomes much slower and generally requikes> M. instead of the presumed steering veatpthe projection ofa
Another essential shortcoming of the SMI algorithm is thainto the sample signal-plus-interference subspace. The eigen-

it does not provide sufficient robustness against a mismatch liecomposition of (6) yields

tween the presumed and actual signal steering veatargla. .

Here,a denotes the actual steering vector that characterizes the R=EAE" + GrG"

ial si f the signal. In the mi h : , . .
spatial signature of the signal. In the mismatched case where the matrix € CM*(+1) contains the/ + 1 signal-

a=a+A#a (10) plus-interference subspace eigenvectorBoénd the diagonal
matrix A € C(/t)x(/+1) contains the corresponding eigen-
whereA is an unknown complex vector that describes the effeghjues ofR. Similarly, the matrixG € ¢M*(M=7-1) contains

of steering vector distortions. As a result, the SMI beamformgfe A/ — J — 1 noise-subspace eigenvectorsi)fwhereas the
tends to “interpret” the signal components in array observatiogggonal matrix@® € ¢(M—7—-1x(M~=J-1) js pyilt from the cor-
as an interference and tries to suppress these componentseldyonding eigenvalues. Heré,is the number of interfering
means of adaptive nulling instead of maintaining distortionleggyrces (or, mathematically, the rank of the interference sub-

response toward (see [6] and [17]). space), which is assumed to be known. The weight vector of the
In the mismatched case, (2) and (9) should be rewritten asgigenspace-based beamformer is given by

o2 |'wH&| A1
INR= 21— "1 11 Weig = R v (15)
S wHRi-i—n'lU ( ) g
where
and
_ _ H
SINR,,: = 07 @ R}, a (12) v=Pga,  Pp=EE (16)

respectively. Several robust modifications of the SMI algorithiif® the projected steering vector and the orthogonal projection
atrix onto the signal-plus-interference subspace, respectively.

have been developed to improve its performance in the abo{fé@!x ; X !
mentioned cases with signal steering vector mismatches aRgerting (16) into (15), the latter equation can be rewritten as
small training sample size. One of the most popular robust ap- we. — EA-1EH, 17)
proaches is the so-called loaded SMI (LSMI) algorithm, which 8 ’
is based on the diagonal loading of the sample covariance maffife eigenspace-based beamformer is known to be one of the
[4], [18]. The essence of this approach is to replace the convghost powerful robust techniques applicable to arbitrary steering
tional sample covariance matrR by the so-called diagonally vector mismatch case [21]. However, an essential shortcoming
loaded covariance matrix of this approach is that it is limited to high SNR cases be-
B — el + R (13) cause at low SNR the estimation of the projection matrix onto
di the signal-plus-interference subspace breaks down because of a
in the SMI algorithm (8). Here is a diagonal loading factor, high probability of subspace swaps [31], [32]. Moreover, the

and! is the identity matrix. Using (13), we can write the LSMI€igenspace-based beamformer is efficient only if the dimen-
weight vector in the following form [4]: sion of the signal-plus-interference subspace is low and known

. R exactly. This makes it difficult to apply the eigenspace-based
wrsyr = Ry a= (€1 + R)_la. (14) beamformer to wireless communications where the dimension
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of the signal-plus-interference subspace may be uncertain arwhconvex quadratic program. It is well known that the gen-
relatively high due to the effects of source scattering [13]-[16ral nonconvex quadratically constrained quadratic program-
ming problem is NP-hard and, thus, intractable. However, as

[Il. NEW APPROACH TOROBUST BEAMFORMING we will show next, due to the special structure of the objective

. . . fupction and the constraints, the problem (21) can be reformu-
In this section, we develop a new adaptive beamformer tt]af -
ed, surprisingly, as a convex SOC program and, thus, solved

is robust against an arbitrary signal steering vector mismatéh. : . o . : =
- ’ ; iciently (in polynomial time) via the well established interior
and small training sample size. Our approach is based on fhe

Lo L oint method.
worst-case performance optimization. We begin with the forma- ) C .
: . . Let us first convert the semi-infinite nonconvex constraints to
lation of the robust adaptive beamforming problem and then de-

o : ; 3 single constraint that corresponds to the worst-case constraint
velop a convex optimization-based implementation of our adaftr)—

tive beamformer using SOC programming. om (20). In particular, (21) can be equivalently described as
) min w” Rw subjectto min |wfc|>1. (22)

A. Formulation w ceAle)

We assume that in practical applications, the norm of théccording to (19), we can rewrite the constraint of (22) as

steering vector distortiolA can be bounded33] by some

: H H
known constant > 0: min |jw”a+w"e| > 1

ecD(e)
IA] <e. (18) where the seD(¢) is defined as
Then, the actual signal steering vector belongs to the set D(e) £ {e] |le|| < e}
Ale) £ {clc=a+e, |le| <e}. (19) Applying the triangle and Cauchy—Schwarz inequalities along

with the inequalitylle|| < ¢, we have that
Indeed, ife = A, then, according to (10}, = a. Sincea can " " - - "
be any vector in (19), we impose a constraint that for allvectors|w” a+w'e| > |w"a| — [w'e| > [w"a| —cllw. (23)
that belong taA(e), the absolute .vallieof the array response Moreover, it is easy to verify that
should not be smaller than one, i.e.,

= lwa +we| = |lwa| — ¢||w]| (24)
lwiel > 1 for all c e Ae). (20)

if e is small enough (i.e., ifw a| > ¢||wl||) and if
Using (20), the robust formulation of adaptive beamformer can w _
be written as the following constrained minimization problem: e= —m gel?

min w? Rw subject towe| > 1forallec € Ae).  (21) where

Note that (21) represents a modified version of (7). The ¢ = angle{w"a} .

main modification of (7) is that instead of requiring fixedN te that ire thaliw™ therwise. th
distortionless response toward the single steering vector ote that we require dw”a| > c|w|, as 0 erwise, he
white noise gain of the robust beamformer may be insufficient

(21), such distortionless response is maintained by means[l !
inequality constrainésfor a continuum of all possible steering*™- -
vectors given by the seti(¢). Hence, the constraints in (21) Then, combining (23) and (24), we conclude that
guarantee that the distortionless response will be maintained in min |we| = |lwa| — c||w]|
theworst casei.e., for the particular vectar that corresponds CeA(e)

to the smallest value div™c|. Therefore, such a design should,,q therefore, the semi-infinite nonconvex quadratically con-
improve the beamformer robustness against signal steerifighineq problem (22) can be written as the following quadratic
vector mismatches that satisfy (18) because in this case, fhifimization problem with ainglenonlinear constraint:
mismatched vectai belongs to the seti(e).

For each choice of € .A(e), the condition|wfe| > 1 min w?Rw  subjectto  |wa|—c||w||>1. (25)
represents a nonlinear amwbnconvexconstraint orw. Since
there is an infinite number of vectoesin A(¢), there is an in- The nonlinear constraint in (25) is still nonconvex due to the ab-

finite number of such constraints. Hence, (21) is a semi-infini@lute value operation on the left-hand side. An important ob-
servation is that the cost function in (25)uschangedvhenw

4Note that this corresponds to a much more general class of mismatches ; : P _
considered in [34], where the bounds on the mismatch vector itself are ustae ergoes an arbltrary phase rotation. Thereforg, ifs an op

rather than that on the norm of this vector. timal solution to (25), we can always rotate, without affecting
SAn important issue that is beyond our present consideration is how to conttBie objective function value, the phasesmf so thatw! a is real.

the phase of the beam response. This issue may be critical when, for exanplgys, we can, without any loss of generality, cho@ssuch that

adaptive beamforming has to be performed over frequency subbands whose out-

puts must be coherently integrated. Re{wHa} >0 (26)
6Constraints in the form of inequality (sometimes referred tsafs con- = -

straint9 are used in other adaptive beamforming techniques as well [35]-[37]. Im {'w a,} =0. 27)
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Using this observation and employing (26) and (27) as addibtain the Lagrange multipliex in a closed form [26]. There-
tional constraints, the constraint in (25) can be written as  fore, to solve (29), an efficient SOC programming-based ap-
" proach is developed in the next section.

wia>el|lw||+1. (28

From (28) along with (27), it follows that Rew’a} > 0. Since C. SoC Implem-entatlon _ _
the constraint (26) is taken into account by (27) and (28), thereThe next step involves developing a SOC formulation of (29).

is no need to add this constraint to the minimization problefote that although we have shown in the previous section that

(25). Therefore, this problem can be rewritten as the inequality constraint in (29) can be replaced by equality, we
e _ " will use this constraint in its original inequality form, which is
min w Rw subjecttow”a > el|w|| + 1 suitable for the SOC implementation.

First of all, we convert the quadratic objective function of (29)
to a linear one. Let
Note that the problem (29) has much simpler formulation than
(21) and isconvex

Im {wHa,} =0. (29)

R=U"U (33)

B. Relationship to the LSMI Beamformer be the Cholesky factorization dt. Using (33), we can convert
the objective function of (29) into

To clarify the problem (29) more, note that the constraint in
(22) is equivalent to w Rw = ||Uw|?. (34)

6161}‘}?6) lwe| =1 (30)  Apparently, minimizing|Uw|| is equivalent to minimizing (34).
Hence, introducing a new scalar non-negative variatded a

or, in other words, (29) corresponds to maximization of thgew constraint|Uw|| < 7, we can convert (29) into the fol-
worst-case output SINR. The equivalence of the equality cagwing problem:
straint (30) and the inequality constraint in (22) can be easily
proved by contradiction as follows. If they are not equivalent to minT  subject tof|Uwl| < 7
each other, then the minimum of the objective function in (22) ’
is achieved whem 2 minee 4() [we| > 1. However, re-
placingw with w/\/x, we can decrease the objective function Im {wHa} =0. (35)
w? Rw by the factor ofs > 1, whereas the constraint in (22) . ) )
will be still satisfied. This contradicts the original statement thd@ facilitate the solution of (35), we need to convert it to a real-
the objective function is minimized when> 1. Therefore, the Valuéd form. Introducing
minimum of the objective function is achievedrat= 1, and .
this proves that the inequality constraint in (29) is equivalent to w
the equality constrainba = ¢|jw|| + 1. Thereforew a is a
real-valued and positive, and the constraint{lm”a} = 0 can a
be ignored. Using these facts, we can rewrite the problem (29)
as

ellw| < wfa -1

2 [Re{w}”, Im{w}"]"
[Refa}”, Im{a}7]"
[

Im{a}”, —Re{a}”
Re{U} —Im{U}
Im{U} Re{U}

(1>

(1>

]T

V]

!
1>

minw? Rw subjectto |w'a— 1> = 2wfw. (31) _ ) )
w we rewrite (35) in terms of real-valued vectors and matrices as

The solution to (31) can be found by minimizing the function . i iy
minT subject to|Uw|| <7
T, W

H(w,)\) = w” Rw
H,  H

STy
+22w w — waaw + wa + a¥w - 1) ellwll <w”a -1

w'a=0. (36)
where A is a Lagrange multiplier. Taking the gradient of
H(w,\) and equating it to zero gives Let us define
w=—\ (R + Xe’T — /\aa,H)_1 a. d= [1, OT]T eRBMHDX
y é [T- ﬁ)T]T ER<2M+1)><1
Agpl_ying the matrix inversion lemma to the latter equation, we A (07, -1,07]" cR(AM+3)x1
obtain 1 o
A . _ 0 U
= - R+ X\e’I)7! 32 . )
Y (R a1 e TAED e (32) FT2 |0 &7 | eROM+axCM+)
. 0 eI
which shows that the proposed robust beamformer belongs to 0 ;T

the class of diagonal loading techniques.
Note, however, that it is not easy to use (32) directly for conwhere0 is the vector of zeros of a conformable dimension. With
puting the optimal weight vector because it is not clear how these notations, (36) can be further transformed to the following
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canonicabualform? of the SOC programming problem (which
is equivalent to (8) in [29]):

nbin d"y subjectto
f+ FTy e SOCMT! x SOCGMH! x {0} (37)

wherey is the vector of variables, SG& ™ is the second-order
cone of the dimensiogM + 1, which corresponds to thih
inequality constraint in (36):(= 1,2), and {0} is the so-called
zero cone that determines the hyperplane due to the equa

OUTPUT SINR (DB)

PRV A op
constraintw™ a = 0. More specifically ol ‘ - - GPTIMALSINR
- /’ — PROPOSED ROBUST BEAMFORMER ||
M+1 A (-~ 2M+1 = F — SMI BEAMFORMER
sog ={p,eR |pi > |IBill}, i=1,2 -9 -~ - LSMI BEAMFORMER i
A ! - - EIGENSPACE-BA
{0} = {p4M+3 eER | Pam+3 = 0} ot i L I ; : S(EDBE{XMFOI}MER
0 10 20 30 40 50 60 70 80 90 100
NUMBER OF SNAPSHOTS
where
Fig. 1. Output SINR versus training sample si¥efirst example.
AT ~T T
P = [P1,D3, pans i3]
o T
- [77 WTU" T — 175111T71‘1’;T&:| IV. SIMULATIONS
—f—FTy In our simulations, we assume a uniform linear array with
~ T M = 10 omnidirectional sensors spaced half a wavelength
P = [p1.p1 ] apart. For each scenario, 200 simulation runs are used to ob-
_ [T ﬁ}Tt,T}T tain each simulated point. In all examples, we assume two in-
' terfering sources with plane wavefronts and the directions of
Py £ [p% Dy ] T arrival (DOAs) 30 and 50, respectively. In all simulations, the
- T interference-to-noise ratio (INR) in a single sensor is equal to
= [ a—1cw } 30 dB, and the signal is always present in the training data cell.
AT Four methods are compared in terms of the mean output SINR:
Panv43 =W a

the proposed robust beamformer (38), the SMI beamformer (8),

Note that after solving the optimization problem (37), the onl{® LSS'V” beamformer (14) witad hocchoice of the diagonal
parameters of interest in the vector of variabjese given by its 10ad? and the eigenspace-based beamformer (17). The optimal

subvectori. The resulting weight vector of our robust adaptive!NR (12) is also shown in all figures. The SeDuMi convex op-
beamformer is given by timization MATLAB toolbox [29] has been used to compute

the weight vector of our robust beamformer that employs the
constant: = 3 throughout the simulations (except one simu-
lation in the first example, where is varied; see Fig. 3), as-

In summary, we converted the robust beamforming proble$h'ming that the nominal _steering vec_tor is normalized so that
(21) to the canonical SOC problem (37). Note that although' @ = M (= 10). The diagonal loading factdr = 100 is
these problems are mathematically equivalent, the origirf@ken in the LSMI beamformer. Furthermore, diagonal loading
problem (21) is computationally intractable, whereas the SOWth the same parameter is applied to our robust technique as
problem (37) can be easily solved using standard and higr\ﬂ’;?” but only in the case when the sample covariance matrix is
efficient interior point method software tools, e.g., [29]. Folow rank (i.e., in the case whel < M).
example, using the primal-dual potential reduction method
[27], the complexity of our beamformer i3(M?) per iteration A. Example 1: Exactly Known Signal Steering Vector
[28], and the algorithm converges typically in less than ten |n this example, we simulate a scenario where the actual
iterations (a well-known and accepted fact in the optimizatiaghatial signature of the signal is known exactly. Note that even
community). Therefore, the overall complexity of our beamn this ideal case, the presence of the signal of interest in the
former is O(M?). This is the same order of complexity asraining data cell may substantially reduce the convergence
that of the SMI algorithm. However, the SMI algorithm has gates of adaptive beamforming algorithms as compared with
computational advantage in tloe-line modewhere the RLS  the signal-free training data case [6].
algorithm can be used to update the SMI beamformer weights this example, the plane-wave signal is assumed to impinge
with the computational complexit)(M?) per updating step. on the array frond, = 3°. Fig. 1 compares four aforementioned
The weight vector of our beamformer cannot be easily updatgfbthods in terms of the mean output array SINR (11) versus
but has to be recomputed in each step. the number of training snapshats for the fixed single-sensor

Wyob = [1D1. . ./’lI)]\/[]T + j[’lf)]\/j+1./ . ./12)2]\,[]T. (38)

’

7Both dual and primal forms of SOC programming problems can be alterna-
tively used when applying the SeDuMi software of [29]. 8This beamformer is hereafter referred to asatidnocL SMI technique.
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Output SINR versus training sample si¥esecond example.

SNR= —10 dB. Fig. 2 displays the performance of these tect '3

niques versus the SNR for the fixed training data gize- 30.
Fig. 3 shows the performance of the methods tested verfsus 10
N = 100 and SNR= —10 dB. Additionally, the beampatterns

of our beamformer and thad hocLSMI algorithm are com- 5p

pared in Fig. 4 forN = 40 and SNR= —10 dB.

B. Example 2: Signal Look Direction Mismatch

TPUT SINR (DB)

I
W

In the second example, a scenario with the signal look dire 3

tion mismatch is considered. We assume that both the presun -10p.

and actual signal spatial signatures are plane waves impingi
from the DOAs 3 and § respectively. This correspondstoa2 _is
mismatch in the signal look direction.

=

Fig. 5 shows the performance of the methods tested versus _20’

o = = OPTIMAL SINR
o —+— PROPOSED ROBUST BEAMFORMER
peg ~ | =~ SMI BEAMFORMER
-4 - LSMI BEAMFORMER
—O]- EIGENSPACE-BASED BEAMFORMER

number of training snapshof$ for the fixed SNR= —10 dB.
The performance of these algorithms versus the SNR for the
fixed training data sizéV = 30 is shown in Fig. 6.
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Fig. 6. Output SINR versus SNR; second example.
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Fig. 7. Output SINR versus training sample si¥ethird example. Fig. 8. Output SINR versus SNR; third example

C. Example 3: Signal Spatial Signature Mismatch Due to  wheres; (k) are i.i.d. zero-mean complex Gaussian random vari-
Coherent Local Scattering ables independently drawn from a random generator. As in the

Our third example corresponds to the scenario where the spggvious example, the DOA&, i = 1, 2, 3, 4 are indepen-
tial signature of the desired signal is distorted by local scatterifigntly drawn in each simulation run from a uniform random
effects. In this example, the presumed signal spatial signaturg@herator with mears- 3° and standard deviatios 2°. Note
a plane wave impinging on the array from Svhereas the actual that the DOAg); change from run to run while remaining fixed

spatial signature is formed by five signal paths and is given bffom snapshot to snapshot. At the same time, the random vari-
abless; (k) change both from run to run and from snapshot

~ 4 e to snapshot. This corresponds to the case of incoherent local
a=a+ Ze "b(6:) (39) scattering [15], where the signal covariance mafiix is no
i=1 longer a rank-one matrix, and (11) for the output SINR should

wherea corresponds to the direct path, wherb@) (i = 1,2, P€ rewritten in a more general form [17]

3, 4) correspond to the coherently scattered paths. We model the wR.w

ith pathb(6;) as a a plane wave impinging on the array from the SINR = H‘Ris . (40)
directiond;. The parameters;, i = 1, 2, 3, 4 are independently W Ritnl0

drawn in each simulation run from a uniform random generat®he ratio (40) is maximized by [17]

with mean= 3° and standard deviatiocg 2°. The parameters

¥;, i =1, 2, 3, 4 represent path phases that are independently wope = P{R; !, R.} (41)

and uniformly drawn from the interval [072in each simulation ) o )
run. Note tha#; andy; (i = 1, 2, 3, 4) change from run to runwhereP{-} is the operator that computes the principal eigen-

while remaining frozen from snapshot to snapshot. This cadgctor of a matrix. Note that solution (41) is of a little practical
corresponds to the so-called coherent scattering [14]. use because in most applications, the majxs unknown, and

Fig. 7 displays the performance of the methods tested verdfs'éasonable estimate of it is available.
the number of training snapshais for the fixed single-sensor Fig. 9 displays the performance of the methods tested versus

SNR= —10 dB. Note that the SNR in this example is definef’® number of training snapshofé with the fixed SNR =
by taking into account all signal paths. —10 dB. As in the previous example, the SNR is defined by

The performance of the same methods versus the SNR for {&INg into account all signal paths.
fixed training data sizeV = 30 is displayed in Fig. 8. The performance of the same methods versus the SNR for
the fixed training data siz& = 30 is displayed in Fig. 10. We

D. Example 4: Signal Spatial Signature Mismatch Due to stress that the optimal SINR for Figs. 9 and 10 is computed as

Incoherent Local Scattering w? R.w,.,
s Wop

In this example, we assume incoherent local scattering of the SINRope = -
desired signal. The signal is assumed to have a time-varying
spatial signature that is different for each data snapshot andviserew,, is given by (41).
modeled as

H p.
Wopt Iz’L-i-anOPt

E. Example 5: Near—Far Signal Spatial Signature Mismatch

a(k) = so(k)a + Z si(k)b(6;) _In the fifth example, we model the so-called near-far spatial
signature mismatch of the desired signal. In this example, the
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Fig. 10. Output SINR versus SNR; fourth example. Fig. 12. Output SINR versus SNR; fifth example.

presumed spatial signature of the signal is a plane wave ighase distortions of the desired signal wavefront [11], [39]. In
pinging on the array from the normal direction, @vhereas the each simulation run, each of these phase distortions (which
actual spatial signature corresponds to the source located inffi@ains fixed for all snapshots) is independently drawn from a
near field of the antenna at a distanbé/\ = (M — 1)’A\/4  Gaussian random generator with variance equal to 0.04.

from the geometrical center of the array, whdbe= (M — Fig. 13 shows the performance of the methods tested versus
1)A/2 is the length of array apertufeThe source is assumed y for the fixed SNR= —10 dB. The performance of these tech-

to be located on the line which is drawn from this geometricaiques versus the SNR for the fixed training data size= 30
center point in the normal direction to the array aperture. s shown in Fig. 14.

The performance of the methods tested versus the number
of training snapshotd’ for the fixed SNR= —10 dB is shown G. Discussion

in Fig. 11. Fig. 12 shows the performance of these techniquesy,, gimylation figures clearly demonstrate that in all ex-
versus the SNR for the fixed training data si¥e= 30. amples, the proposed robust beamformer consistently enjoys
the best performance among the methods tested. Indeed,
our new method outperforms the SMad hoc LSMI, and
eigenspace-based beamformers, achieving a performance that
In our last example, we simulate the situation when the signalconsistently close to the optimal SINR for all values of SNR.
spatial signature is distorted by wave propagation effects in ead hocL SMI algorithm is another well-performing method
inhomogeneous medium. We assume independent-incremgdits performance is comparable with that of our robust beam-

9Far field condition requires that the distance between the source and antel@igner in a Part of the _examp_les tested. This can be explained
remains much larger thaR /X [38]. by the fact discovered in Section Il that our beamformer ] be-

F. Example 6: Signal Spatial Signature Mismatch Due to
Wavefront Distortion
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I R e beamformer at low SNRs is caused by the subspace swap ef-
' : fect [31], [32], whereas the aforementioned performance losses
of the SMI algorithm at high SNRs are due to the fact that in-
creasing the amount of the signal component in the training data
is known to lead to a substantial degradatfoof the output

) SINR of SMI-type beamformers [6]. Furthermore, from Figs. 1,
z 5,7,9, 11, and 13, it follows that the proposed algorithm en-
‘E joys much faster convergence rate than the SMI and eigenspace-
'.?__ based algorithms. It is worth noting that even in the situation
3 without any steering vector mismatch (Example 1, Figs. 1 and
; RIE SNt ST R PRI - 2), the proposed technique has substantially better performance
sl '/{ | - ?{SP“(”;;E g%\IgBUSTBEAMFORMER I Zmd faster convergence rate than the SMI and eigenspace-based
! : .| — SMIBEAMFORMER : eamformers. " ,
o el - LSMI BEAMFORMER i Fig. 3 demonstrates that the proposed beamformer is insensi-
. ], L EIGENSPACE-BASED BEAMFORMER tive to the choice of the parameterwhereas Fig. 4 shows that

-10
o 1020 30 40 S0 0 70 80 90 100 the heampatterns of the proposed beamformer and the LSMI

NUMBER OF SNAPSHOTS
beamformer are very similar to each other. This can be explained
Fig. 13. Output SINR versus training sample si¢esixth example. by the above-mentioned fact that the proposed beamformer is
equivalent to the LSMI beamformer whose diagonal loading
factor is optimally matched to the known level of the steering
vector distortion.

15

101 V. CONCLUSIONS

A new adaptive beamformer with an improved robustness
against an arbitrary unknown signal steering vector mismatch
has been proposed. Our technique optimizes the worst-case
performance by minimizing the output interference-plus-noise
power while maintaining a distortionless response for the
worst-case (mismatched) signal steering vector. A convex
formulation for such a robust adaptive beamforming problem
is derived using second-order cone programming. It is shown

w

OUTPUT SINR (DB)

P Y é/ ‘ . gg%’;ég?gwﬂ BEAMFORMER ||  that _the proposed beamforme_r can b_e interpreted_ as a diagqnal
o be i?&?gg%ﬁgggﬁg( Ioadl_ng approach whose optimal diagonal loading fac_tor is
y -0 EIGENSPACE-BASED BEAMFORMER precisely computed based on the known level of uncertainty in
s 15 Z10 s 0 5 the signal steering vector. Computer simulations with several
SNR (DB) frequently encountered types of signal steering vector mis-

_ _ match show better performance of the proposed beamformer as
Fig. 4. Output SINR versus SNR; sixth example. compared with several popular robust adaptive beamforming

algorithms.

lonas to the class of diaconal loading techniques. However rIn addition to the offered performance improvements relative
al cg>r'thm erforms belttgr than t}aeli r?ocLS|v:IC]umetﬁodY\:1 :/he, % existing methods, the proposed beamformer enjoys simple
fogrtr: o a?n le at all SNRs (Figs. 9 and 10) and in thle 60 implementation. The order of computational complexity of
urth example ¢ 19S. - a1 s algorithm is comparable with that of the SMI technique.
third, fifth, and sixth examples at high SNRs (Figs. 6, 8, 12 an - - . .
14). Note that in th les. the af tioned ; can be efficiently implemented using currently available
)- No € that In Inese examples, the aiorementioned PerigR, o, optimization software toolboxes based on interior point
mance gains of our beamformer as compared withathéoc algorithms
LSMI method can achieve 2 dB. Clearly, this improvement in '
performance is due to a more proper choice of the diagonal
loading factor in our beamformer as compared withahéhoc
LSMI beamformer. The authors wish to thank the anonymous reviewers for
The performance of the SMI and eigenspace-based beaheir helpful comments and suggestions, which led to the
formers is much worse than that of the proposed beamformerderstanding of the relationship between our beamformer and
and thead hocLSMI beamformer either at high SNRs (as irthe diagonal loading method.
the case of SMI beamformer: Figs. 2, 6, 8, 12, and 14) or at low
SNRs (as in the case of eigenspace-based beamformer, the same
figures). Moreover, in the fourth example, the SMI algorithm | _ _ ) _ i
. OThis degradation occurs because the signal component “contaminates” the
shows poor performance at all values of the SNR (see Fig. 1Qdining observations (which in the ideal case must contain the interference and
Note that the performance breakdown of the eigenspace-basgsk components only).
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