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Abstract—Adaptive beamforming methods are known to
degrade if some of underlying assumptions on the environment,
sources, or sensor array become violated. In particular, if the
desired signal is present in training snapshots, the adaptive
array performance may be quite sensitive even to slight mis-
matches between the presumed and actual signal steering vectors
(spatial signatures). Such mismatches can occur as a result of
environmental nonstationarities, look direction errors, imperfect
array calibration, distorted antenna shape, as well as distortions
caused by medium inhomogeneities, near–far mismatch, source
spreading, and local scattering. The similar type of performance
degradation can occur when the signal steering vector is known
exactly but the training sample size is small.

In this paper, we develop a new approach to robust adaptive
beamforming in the presence of an arbitrary unknown signal
steering vector mismatch. Our approach is based on the opti-
mization of worst-case performance. It turns out that the natural
formulation of this adaptive beamforming problem involves
minimization of a quadratic function subject to infinitely many
nonconvex quadratic constraints. We show that this (originally
intractable) problem can be reformulated in a convex form as the
so-called second-order cone (SOC) program and solved efficiently
(in polynomial time) using the well-established interior point
method. It is also shown that the proposed technique can be in-
terpreted in terms of diagonal loading where the optimal value of
the diagonal loading factor is computed based on the known level
of uncertainty of the signal steering vector. Computer simulations
with several frequently encountered types of signal steering vector
mismatches show better performance of our robust beamformer
as compared with existing adaptive beamforming algorithms.

Index Terms—Optimal diagonal loading, robust adaptive
beamforming, second-order cone programming, signal mismatch
problem, worst-case performance optimization.

I. INTRODUCTION

I N recent decades, adaptive beamforming has been widely
used in wireless communications, microphone array speech

processing, radar, sonar, medical imaging, radio astronomy,
and other areas. A traditional approach to the design of adaptive
beamformers assumes that the desired signal components are
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not present in training data [1]. In this case, several rapidly
converging techniques have been developed [1]–[5] that are ap-
plicable to problems with small training sample size. Although
the assumption of signal-free training snapshots may be true
in some areas (such as radar), there are numerous applications
where the observations are always “contaminated” by the signal
component. Such applications, for example, include mobile
communications, passive source location, microphone array
speech processing, medical imaging, and radio astronomy. It is
well known that even in the ideal case where the signal steering
vector is exactly known, the presence of the signal of interest
in training data cell may dramatically reduce the convergence
rates of adaptive beamforming algorithms as compared with the
signal-free training data case [6]. This may cause a substantial
degradation of the performance of adaptive beamforming
techniques in situations of small training sample size.

When adaptive arrays are applied to practical problems, the
performance degradation of adaptive beamforming techniques
may become even more pronounced than in the aforementioned
ideal case because some of underlying assumptions on the envi-
ronment, sources, or sensor array can be violated and this may
cause a mismatch between the nominal (presumed) and actual
signal steering vectors. Adaptive array techniques are known to
be very sensitive even to slight mismatches of such type that can
easily occur in practical situations as a consequence of look di-
rection and signal pointing errors [7], [8] or imperfect array cal-
ibration and distorted antenna shape [9]. Other common causes
of model mismatch include array manifold mismodeling due to
source wavefront distortions resulting from environmental inho-
mogeneities [10], [11], near–far problem [12], source spreading
and local scattering [13]–[16], as well as other effects [17]. In
such cases, robust approaches to adaptive beamforming are re-
quired [17]–[19].

There are several existing approaches to robust adaptive
beamforming. The most common is the so-called linearly
constrained minimum variance (LCMV) beamformer, which
provides robustness against uncertainty in the signal look
direction. Recently, several other techniques addressing this
type of mismatch have been developed (see [19] and references
therein). However, the applicability of these techniques is
limited by scenarios with look direction mismatches only. If
any other types of steering vector mismatch become dominant
(e.g., mismatches due to array perturbations, array manifold
mismodeling, wavefront distortions, or source local scattering),
these methods cannot be expected to provide sufficient robust-
ness improvements [17].
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Several other approaches are known to be able to partly over-
come the problem of arbitrary steering vector mismatches. The
most popular of them are the quadratically constrained beam-
former (whose implementation is based on the so-calleddiag-
onal loadingof the sample covariance matrix [4], [18], [20])
and the eigenspace-based beamformer [6], [21]. However, the
main shortcoming of the former approach is that it is not clear
how to obtain the optimal value of the diagonal loading factor
based on the known level of uncertainty of the signal steering
vector, whereas the latter approach is essentially ineffective at
low signal-to-noise ratios (SNRs) and when the dimension of
the signal-plus-interference subspace is high.1 This, unfortu-
nately, makes it difficult to apply the eigenspace-based beam-
former to wireless communications where the dimension of the
signal-plus-interference subspace may be uncertain and rela-
tively high due to the effects of signal local scattering [13]–[16].

In this paper (also see [22]–[24]), we develop a new powerful
approach to robust adaptive beamforming in the presence of
an arbitrary unknown steering vector mismatch. Our approach
is based on the optimization of worst-case performance. It
turns out that the natural formulation of this problem involves
minimization of a quadratic function subject to infinitely many
nonconvex quadratic constraints and therefore is NP-hard2 to
solve. However, we show that this robust adaptive beamforming
problem can be reformulated as a convex second-order cone
(SOC) program and solved efficiently (in polynomial time)
via the well-established interior point method (see [27]–[29]).
This result is somewhat surprising from the optimization
theory standpoint and is based on a procedure that transforms
a semi-infinite nonconvex quadratically constrained homo-
geneous quadratic minimization problem to a convex SOC
program. We show that our beamformer can be interpreted as a
diagonal loading approach3 in which the optimal value of the
diagonal loading factor is computed based on the known upper
bound on the norm of the signal steering vector mismatch.

Computer simulations with several frequently encountered
types of signal steering vector mismatches show a visible perfor-
mance gain of the proposed beamformer over other traditional
and robust adaptive beamforming techniques.

Our paper is organized as follows. Some background of adap-
tive beamforming is presented in Section II, where several pop-
ular robust adaptive beamforming techniques are overviewed. In
Section III, we first describe a new formulation of robust adap-
tive beamforming based on the optimization of worst-case per-
formance. Then, we establish the diagonal loading based inter-
pretation of our robust adaptive beamforming problem and con-
vert it to a convex SOC problem that can be efficiently solved
using the well-established interior point algorithms. Section IV
presents our simulation results where the performance of the
proposed method is compared with the existing algorithms in
situations with different types of the signal steering vector mis-
match. Section V contains our concluding remarks.

1Additionally, this dimension must be exactly known in this technique.
2In optimization theory, NP-hard problems represent a class of extremely dif-

ficult problems that have no known polynomial-time solutions [25].
3Very recently, another robust worst-case optimization-based beamformer

(which also belongs to the class of diagonal loading techniques) has been
independently formulated; see [26].

II. BACKGROUND

The output of a narrowband beamformer is given by

where is the time index,
is the complex vector of array observations,

is the complex vector of
beamformer weights, is the number of array sensors, and

and stand for the transpose and Hermitian transpose,
respectively. The observation (training snapshot) vector is
given by

(1)

where , , and are the desired signal, interference,
and noise components, respectively. Here, is the signal
waveform, and is the signal steering vector. The weight vector
can be found from the maximum of the signal-to-interference-
plus-noise ratio (SINR) [5]

SINR (2)

where

(3)

is the interference-plus-noise covariance matrix, and
is the signal power. It is easy to find the solution for the

weight vector by maintaining a distortionless response toward
the desired signal and minimizing the output interference-plus-
noise power [5]. Hence, the maximization of (2) is equivalent to
[5]

subject to (4)

From (4), the following well-known solution can be found for
the optimal weight vector [5]:

(5)

where is the normalization constant that
does not affect the output SINR (2) and, therefore, will be
omitted in the interest of brevity. The solution (5) is commonly
referred to as the minimum variance distortionless response
(MVDR) beamformer [5], [30].

In practical applications, the exact interference-plus-noise co-
variance matrix is unavailable. Therefore, the sample co-
variance matrix

(6)

is used instead of (3) (see [1]). Here,is the number of training
snapshots (also termed thetraining sample size). In this case, (4)
should be rewritten as

subject to (7)
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The solution to this problem is commonly referred to as the
sample matrix inversion (SMI) algorithm, whose weight vector
(after omitting the immaterial constant ) is
given by [1]

(8)

When the signal component is present in the training data cell
(cf. (1)), the use of the sample covariance matrix (6) in place
of the true interference-plus-noise covariance matrix (3) affects
the performance of the SMI algorithm dramatically [6]. It is well
known since the classic paper [1] that in the case of signal-free
training samples, the use of weight vector (8) provides rapid
convergence of the output SINR to its optimal value

SINR (9)

so that the average performance losses relative to (9) are less
than 3 dB if . However, this is no longer true if the
training snapshots are “contaminated” by the signal component.
It was shown in [6] that in the latter case the convergence to (9)
becomes much slower and generally requires .

Another essential shortcoming of the SMI algorithm is that
it does not provide sufficient robustness against a mismatch be-
tween the presumed and actual signal steering vectorsand .
Here, denotes the actual steering vector that characterizes the
spatial signature of the signal. In the mismatched case

(10)

where is an unknown complex vector that describes the effect
of steering vector distortions. As a result, the SMI beamformer
tends to “interpret” the signal components in array observations
as an interference and tries to suppress these components by
means of adaptive nulling instead of maintaining distortionless
response toward (see [6] and [17]).

In the mismatched case, (2) and (9) should be rewritten as

SINR (11)

and

SINR (12)

respectively. Several robust modifications of the SMI algorithm
have been developed to improve its performance in the above-
mentioned cases with signal steering vector mismatches and
small training sample size. One of the most popular robust ap-
proaches is the so-called loaded SMI (LSMI) algorithm, which
is based on the diagonal loading of the sample covariance matrix
[4], [18]. The essence of this approach is to replace the conven-
tional sample covariance matrix by the so-called diagonally
loaded covariance matrix

(13)

in the SMI algorithm (8). Here, is a diagonal loading factor,
and is the identity matrix. Using (13), we can write the LSMI
weight vector in the following form [4]:

(14)

The main problem of the LSMI method is how to chose the
diagonal loading factor. Cox et al. [18] proposed to use the
so-calledwhite noise gain constraintto obtain reasonable values
of this parameter. Unfortunately, it is not clear how to relate the
parameters of the white noise gain constraint and the level of
uncertainty of the signal steering vector. Furthermore, the rela-
tionship between the diagonal loading factor and the parameters
of the white noise gain constraint is not simple, and to satisfy this
constraint, a multistep iterative procedure is required to adjust
the diagonal loading factor [18]. Each step of this iterative pro-
cedure involves an update of the inverse of the diagonally loaded
covariance matrix, and as a result, the total computational com-
plexity of adaptive beamforming with the white noise gain con-
straint may be higher than that of the SMI algorithm. Because
of this, the diagonal loading factor is usually chosen in a more
ad hocway, typically about 10 , where is the noise power
in a single sensor.

Another popular approach to robust adaptive beamforming
in the general case of an arbitrary mismatch is the so-called
eigenspace-based beamformer [6], [21] whose key idea is to use,
instead of the presumed steering vector, the projection of
onto the sample signal-plus-interference subspace. The eigen-
decomposition of (6) yields

where the matrix contains the signal-
plus-interference subspace eigenvectors of, and the diagonal
matrix contains the corresponding eigen-
values of . Similarly, the matrix contains
the noise-subspace eigenvectors of, whereas the
diagonal matrix is built from the cor-
responding eigenvalues. Here,is the number of interfering
sources (or, mathematically, the rank of the interference sub-
space), which is assumed to be known. The weight vector of the
eigenspace-based beamformer is given by

(15)

where

(16)

are the projected steering vector and the orthogonal projection
matrix onto the signal-plus-interference subspace, respectively.
Inserting (16) into (15), the latter equation can be rewritten as

(17)

The eigenspace-based beamformer is known to be one of the
most powerful robust techniques applicable to arbitrary steering
vector mismatch case [21]. However, an essential shortcoming
of this approach is that it is limited to high SNR cases be-
cause at low SNR the estimation of the projection matrix onto
the signal-plus-interference subspace breaks down because of a
high probability of subspace swaps [31], [32]. Moreover, the
eigenspace-based beamformer is efficient only if the dimen-
sion of the signal-plus-interference subspace is low and known
exactly. This makes it difficult to apply the eigenspace-based
beamformer to wireless communications where the dimension
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of the signal-plus-interference subspace may be uncertain and
relatively high due to the effects of source scattering [13]–[16].

III. N EW APPROACH TOROBUSTBEAMFORMING

In this section, we develop a new adaptive beamformer that
is robust against an arbitrary signal steering vector mismatch
and small training sample size. Our approach is based on the
worst-case performance optimization. We begin with the formu-
lation of the robust adaptive beamforming problem and then de-
velop a convex optimization-based implementation of our adap-
tive beamformer using SOC programming.

A. Formulation

We assume that in practical applications, the norm of the
steering vector distortion can be bounded4 [33] by some
known constant :

(18)

Then, the actual signal steering vector belongs to the set

(19)

Indeed, if , then, according to (10), . Since can
be any vector in (19), we impose a constraint that for all vectors
that belong to , the absolute value5 of the array response
should not be smaller than one, i.e.,

for all (20)

Using (20), the robust formulation of adaptive beamformer can
be written as the following constrained minimization problem:

subject to for all (21)

Note that (21) represents a modified version of (7). The
main modification of (7) is that instead of requiring fixed
distortionless response toward the single steering vector, in
(21), such distortionless response is maintained by means of
inequality constraints6 for a continuum of all possible steering
vectors given by the set . Hence, the constraints in (21)
guarantee that the distortionless response will be maintained in
theworst case, i.e., for the particular vector that corresponds
to the smallest value of . Therefore, such a design should
improve the beamformer robustness against signal steering
vector mismatches that satisfy (18) because in this case, the
mismatched vector belongs to the set .

For each choice of , the condition
represents a nonlinear andnonconvexconstraint on . Since
there is an infinite number of vectorsin , there is an in-
finite number of such constraints. Hence, (21) is a semi-infinite

4Note that this corresponds to a much more general class of mismatches than
considered in [34], where the bounds on the mismatch vector itself are used
rather than that on the norm of this vector.

5An important issue that is beyond our present consideration is how to control
the phase of the beam response. This issue may be critical when, for example,
adaptive beamforming has to be performed over frequency subbands whose out-
puts must be coherently integrated.

6Constraints in the form of inequality (sometimes referred to assoft con-
straints) are used in other adaptive beamforming techniques as well [35]–[37].

nonconvex quadratic program. It is well known that the gen-
eral nonconvex quadratically constrained quadratic program-
ming problem is NP-hard and, thus, intractable. However, as
we will show next, due to the special structure of the objective
function and the constraints, the problem (21) can be reformu-
lated, surprisingly, as a convex SOC program and, thus, solved
efficiently (in polynomial time) via the well established interior
point method.

Let us first convert the semi-infinite nonconvex constraints to
a single constraint that corresponds to the worst-case constraint
from (20). In particular, (21) can be equivalently described as

subject to (22)

According to (19), we can rewrite the constraint of (22) as

where the set is defined as

Applying the triangle and Cauchy–Schwarz inequalities along
with the inequality , we have that

(23)

Moreover, it is easy to verify that

(24)

if is small enough (i.e., if ) and if

where

angle

Note that we require that , as otherwise, the
white noise gain of the robust beamformer may be insufficient
[18].

Then, combining (23) and (24), we conclude that

and therefore, the semi-infinite nonconvex quadratically con-
strained problem (22) can be written as the following quadratic
minimization problem with asinglenonlinear constraint:

subject to (25)

The nonlinear constraint in (25) is still nonconvex due to the ab-
solute value operation on the left-hand side. An important ob-
servation is that the cost function in (25) isunchangedwhen
undergoes an arbitrary phase rotation. Therefore, ifis an op-
timal solution to (25), we can always rotate, without affecting
the objective function value, the phase ofso that is real.
Thus, we can, without any loss of generality, choosesuch that

Re (26)

Im (27)
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Using this observation and employing (26) and (27) as addi-
tional constraints, the constraint in (25) can be written as

(28)

From (28) along with (27), it follows that Re . Since
the constraint (26) is taken into account by (27) and (28), there
is no need to add this constraint to the minimization problem
(25). Therefore, this problem can be rewritten as

subject to

Im (29)

Note that the problem (29) has much simpler formulation than
(21) and isconvex.

B. Relationship to the LSMI Beamformer

To clarify the problem (29) more, note that the constraint in
(22) is equivalent to

(30)

or, in other words, (29) corresponds to maximization of the
worst-case output SINR. The equivalence of the equality con-
straint (30) and the inequality constraint in (22) can be easily
proved by contradiction as follows. If they are not equivalent to
each other, then the minimum of the objective function in (22)
is achieved when . However, re-
placing with , we can decrease the objective function

by the factor of , whereas the constraint in (22)
will be still satisfied. This contradicts the original statement that
the objective function is minimized when . Therefore, the
minimum of the objective function is achieved at , and
this proves that the inequality constraint in (29) is equivalent to
the equality constraint . Therefore, is
real-valued and positive, and the constraint Im can
be ignored. Using these facts, we can rewrite the problem (29)
as

subject to (31)

The solution to (31) can be found by minimizing the function

where is a Lagrange multiplier. Taking the gradient of
and equating it to zero gives

Applying the matrix inversion lemma to the latter equation, we
obtain

(32)

which shows that the proposed robust beamformer belongs to
the class of diagonal loading techniques.

Note, however, that it is not easy to use (32) directly for com-
puting the optimal weight vector because it is not clear how to

obtain the Lagrange multiplier in a closed form [26]. There-
fore, to solve (29), an efficient SOC programming-based ap-
proach is developed in the next section.

C. SOC Implementation

The next step involves developing a SOC formulation of (29).
Note that although we have shown in the previous section that
the inequality constraint in (29) can be replaced by equality, we
will use this constraint in its original inequality form, which is
suitable for the SOC implementation.

First of all, we convert the quadratic objective function of (29)
to a linear one. Let

(33)

be the Cholesky factorization of. Using (33), we can convert
the objective function of (29) into

(34)

Apparently, minimizing is equivalent to minimizing (34).
Hence, introducing a new scalar non-negative variableand a
new constraint , we can convert (29) into the fol-
lowing problem:

subject to

Im (35)

To facilitate the solution of (35), we need to convert it to a real-
valued form. Introducing

Re Im

Re Im

Im Re

Re Im
Im Re

we rewrite (35) in terms of real-valued vectors and matrices as

subject to

(36)

Let us define

where is the vector of zeros of a conformable dimension. With
these notations, (36) can be further transformed to the following
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canonicaldual form7 of the SOC programming problem (which
is equivalent to (8) in [29]):

subject to

SOC SOC (37)

where is the vector of variables, SOC is the second-order
cone of the dimension , which corresponds to theth
inequality constraint in (36) ( ,2), and {0} is the so-called
zero cone that determines the hyperplane due to the equality
constraint . More specifically

SOC

where

Note that after solving the optimization problem (37), the only
parameters of interest in the vector of variablesare given by its
subvector . The resulting weight vector of our robust adaptive
beamformer is given by

(38)

In summary, we converted the robust beamforming problem
(21) to the canonical SOC problem (37). Note that although
these problems are mathematically equivalent, the original
problem (21) is computationally intractable, whereas the SOC
problem (37) can be easily solved using standard and highly
efficient interior point method software tools, e.g., [29]. For
example, using the primal-dual potential reduction method
[27], the complexity of our beamformer is per iteration
[28], and the algorithm converges typically in less than ten
iterations (a well-known and accepted fact in the optimization
community). Therefore, the overall complexity of our beam-
former is . This is the same order of complexity as
that of the SMI algorithm. However, the SMI algorithm has a
computational advantage in theon-line mode, where the RLS
algorithm can be used to update the SMI beamformer weights
with the computational complexity per updating step.
The weight vector of our beamformer cannot be easily updated
but has to be recomputed in each step.

7Both dual and primal forms of SOC programming problems can be alterna-
tively used when applying the SeDuMi software of [29].

Fig. 1. Output SINR versus training sample sizeN ; first example.

IV. SIMULATIONS

In our simulations, we assume a uniform linear array with
omnidirectional sensors spaced half a wavelength

apart. For each scenario, 200 simulation runs are used to ob-
tain each simulated point. In all examples, we assume two in-
terfering sources with plane wavefronts and the directions of
arrival (DOAs) 30 and 50 , respectively. In all simulations, the
interference-to-noise ratio (INR) in a single sensor is equal to
30 dB, and the signal is always present in the training data cell.
Four methods are compared in terms of the mean output SINR:
the proposed robust beamformer (38), the SMI beamformer (8),
the LSMI beamformer (14) withad hocchoice of the diagonal
load,8 and the eigenspace-based beamformer (17). The optimal
SINR (12) is also shown in all figures. The SeDuMi convex op-
timization MATLAB toolbox [29] has been used to compute
the weight vector of our robust beamformer that employs the
constant throughout the simulations (except one simu-
lation in the first example, where is varied; see Fig. 3), as-
suming that the nominal steering vector is normalized so that

( 10). The diagonal loading factor is
taken in the LSMI beamformer. Furthermore, diagonal loading
with the same parameter is applied to our robust technique as
well but only in the case when the sample covariance matrix is
low rank (i.e., in the case when ).

A. Example 1: Exactly Known Signal Steering Vector

In this example, we simulate a scenario where the actual
spatial signature of the signal is known exactly. Note that even
in this ideal case, the presence of the signal of interest in the
training data cell may substantially reduce the convergence
rates of adaptive beamforming algorithms as compared with
the signal-free training data case [6].

In this example, the plane-wave signal is assumed to impinge
on the array from . Fig. 1 compares four aforementioned
methods in terms of the mean output array SINR (11) versus
the number of training snapshots for the fixed single-sensor

8This beamformer is hereafter referred to as thead hocLSMI technique.
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Fig. 2. Output SINR versus SNR; first example.

Fig. 3. Output SINR versus"; first example.

SNR 10 dB. Fig. 2 displays the performance of these tech-
niques versus the SNR for the fixed training data size .
Fig. 3 shows the performance of the methods tested versusfor

and SNR 10 dB. Additionally, the beampatterns
of our beamformer and thead hocLSMI algorithm are com-
pared in Fig. 4 for and SNR 10 dB.

B. Example 2: Signal Look Direction Mismatch

In the second example, a scenario with the signal look direc-
tion mismatch is considered. We assume that both the presumed
and actual signal spatial signatures are plane waves impinging
from the DOAs 3 and 5, respectively. This corresponds to a 2
mismatch in the signal look direction.

Fig. 5 shows the performance of the methods tested versus the
number of training snapshots for the fixed SNR 10 dB.
The performance of these algorithms versus the SNR for the
fixed training data size is shown in Fig. 6.

Fig. 4. Beampatterns of the proposed andad hocLSMI beamformers; first
example.

Fig. 5. Output SINR versus training sample sizeN ; second example.

Fig. 6. Output SINR versus SNR; second example.



320 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 2, FEBRUARY 2003

Fig. 7. Output SINR versus training sample sizeN ; third example.

C. Example 3: Signal Spatial Signature Mismatch Due to
Coherent Local Scattering

Our third example corresponds to the scenario where the spa-
tial signature of the desired signal is distorted by local scattering
effects. In this example, the presumed signal spatial signature is
a plane wave impinging on the array from 3, whereas the actual
spatial signature is formed by five signal paths and is given by

(39)

where corresponds to the direct path, whereas ( 1, 2,
3, 4) correspond to the coherently scattered paths. We model the
th path as a a plane wave impinging on the array from the

direction . The parameters , 1, 2, 3, 4 are independently
drawn in each simulation run from a uniform random generator
with mean and standard deviation . The parameters

, 1, 2, 3, 4 represent path phases that are independently
and uniformly drawn from the interval [0, 2] in each simulation
run. Note that and ( 1, 2, 3, 4) change from run to run
while remaining frozen from snapshot to snapshot. This case
corresponds to the so-called coherent scattering [14].

Fig. 7 displays the performance of the methods tested versus
the number of training snapshots for the fixed single-sensor
SNR 10 dB. Note that the SNR in this example is defined
by taking into account all signal paths.

The performance of the same methods versus the SNR for the
fixed training data size is displayed in Fig. 8.

D. Example 4: Signal Spatial Signature Mismatch Due to
Incoherent Local Scattering

In this example, we assume incoherent local scattering of the
desired signal. The signal is assumed to have a time-varying
spatial signature that is different for each data snapshot and is
modeled as

Fig. 8. Output SINR versus SNR; third example.

where are i.i.d. zero-mean complex Gaussian random vari-
ables independently drawn from a random generator. As in the
previous example, the DOAs , 1, 2, 3, 4 are indepen-
dently drawn in each simulation run from a uniform random
generator with mean and standard deviation . Note
that the DOAs change from run to run while remaining fixed
from snapshot to snapshot. At the same time, the random vari-
ables change both from run to run and from snapshot
to snapshot. This corresponds to the case of incoherent local
scattering [15], where the signal covariance matrix is no
longer a rank-one matrix, and (11) for the output SINR should
be rewritten in a more general form [17]

SINR (40)

The ratio (40) is maximized by [17]

(41)

where is the operator that computes the principal eigen-
vector of a matrix. Note that solution (41) is of a little practical
use because in most applications, the matrixis unknown, and
no reasonable estimate of it is available.

Fig. 9 displays the performance of the methods tested versus
the number of training snapshots with the fixed SNR

10 dB. As in the previous example, the SNR is defined by
taking into account all signal paths.

The performance of the same methods versus the SNR for
the fixed training data size is displayed in Fig. 10. We
stress that the optimal SINR for Figs. 9 and 10 is computed as

SINR

where is given by (41).

E. Example 5: Near–Far Signal Spatial Signature Mismatch

In the fifth example, we model the so-called near-far spatial
signature mismatch of the desired signal. In this example, the
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Fig. 9. Output SINR versus training sample sizeN ; fourth example.

Fig. 10. Output SINR versus SNR; fourth example.

presumed spatial signature of the signal is a plane wave im-
pinging on the array from the normal direction 0, whereas the
actual spatial signature corresponds to the source located in the
near field of the antenna at a distance
from the geometrical center of the array, where

is the length of array aperture.9 The source is assumed
to be located on the line which is drawn from this geometrical
center point in the normal direction to the array aperture.

The performance of the methods tested versus the number
of training snapshots for the fixed SNR 10 dB is shown
in Fig. 11. Fig. 12 shows the performance of these techniques
versus the SNR for the fixed training data size .

F. Example 6: Signal Spatial Signature Mismatch Due to
Wavefront Distortion

In our last example, we simulate the situation when the signal
spatial signature is distorted by wave propagation effects in an
inhomogeneous medium. We assume independent-increment

9Far field condition requires that the distance between the source and antenna
remains much larger thanD =� [38].

Fig. 11. Output SINR versus training sample sizeN ; fifth example.

Fig. 12. Output SINR versus SNR; fifth example.

phase distortions of the desired signal wavefront [11], [39]. In
each simulation run, each of these phase distortions (which
remains fixed for all snapshots) is independently drawn from a
Gaussian random generator with variance equal to 0.04.

Fig. 13 shows the performance of the methods tested versus
for the fixed SNR 10 dB. The performance of these tech-

niques versus the SNR for the fixed training data size
is shown in Fig. 14.

G. Discussion

Our simulation figures clearly demonstrate that in all ex-
amples, the proposed robust beamformer consistently enjoys
the best performance among the methods tested. Indeed,
our new method outperforms the SMI,ad hoc LSMI, and
eigenspace-based beamformers, achieving a performance that
is consistently close to the optimal SINR for all values of SNR.
Thead hocLSMI algorithm is another well-performing method
as its performance is comparable with that of our robust beam-
former in a part of the examples tested. This can be explained
by the fact discovered in Section III that our beamformer ] be-
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Fig. 13. Output SINR versus training sample sizeN ; sixth example.

Fig. 14. Output SINR versus SNR; sixth example.

longs to the class of diagonal loading techniques. However, our
algorithm performs better than thead hocLSMI method in the
fourth example at all SNRs (Figs. 9 and 10) and in the second,
third, fifth, and sixth examples at high SNRs (Figs. 6, 8, 12 and
14). Note that in these examples, the aforementioned perfor-
mance gains of our beamformer as compared with thead hoc
LSMI method can achieve 2 dB. Clearly, this improvement in
performance is due to a more proper choice of the diagonal
loading factor in our beamformer as compared with thead hoc
LSMI beamformer.

The performance of the SMI and eigenspace-based beam-
formers is much worse than that of the proposed beamformer
and thead hocLSMI beamformer either at high SNRs (as in
the case of SMI beamformer: Figs. 2, 6, 8, 12, and 14) or at low
SNRs (as in the case of eigenspace-based beamformer, the same
figures). Moreover, in the fourth example, the SMI algorithm
shows poor performance at all values of the SNR (see Fig. 10).
Note that the performance breakdown of the eigenspace-based

beamformer at low SNRs is caused by the subspace swap ef-
fect [31], [32], whereas the aforementioned performance losses
of the SMI algorithm at high SNRs are due to the fact that in-
creasing the amount of the signal component in the training data
is known to lead to a substantial degradation10 of the output
SINR of SMI-type beamformers [6]. Furthermore, from Figs. 1,
5, 7, 9, 11, and 13, it follows that the proposed algorithm en-
joys much faster convergence rate than the SMI and eigenspace-
based algorithms. It is worth noting that even in the situation
without any steering vector mismatch (Example 1, Figs. 1 and
2), the proposed technique has substantially better performance
and faster convergence rate than the SMI and eigenspace-based
beamformers.

Fig. 3 demonstrates that the proposed beamformer is insensi-
tive to the choice of the parameter, whereas Fig. 4 shows that
the beampatterns of the proposed beamformer and the LSMI
beamformer are very similar to each other. This can be explained
by the above-mentioned fact that the proposed beamformer is
equivalent to the LSMI beamformer whose diagonal loading
factor is optimally matched to the known level of the steering
vector distortion.

V. CONCLUSIONS

A new adaptive beamformer with an improved robustness
against an arbitrary unknown signal steering vector mismatch
has been proposed. Our technique optimizes the worst-case
performance by minimizing the output interference-plus-noise
power while maintaining a distortionless response for the
worst-case (mismatched) signal steering vector. A convex
formulation for such a robust adaptive beamforming problem
is derived using second-order cone programming. It is shown
that the proposed beamformer can be interpreted as a diagonal
loading approach whose optimal diagonal loading factor is
precisely computed based on the known level of uncertainty in
the signal steering vector. Computer simulations with several
frequently encountered types of signal steering vector mis-
match show better performance of the proposed beamformer as
compared with several popular robust adaptive beamforming
algorithms.

In addition to the offered performance improvements relative
to existing methods, the proposed beamformer enjoys simple
implementation. The order of computational complexity of
this algorithm is comparable with that of the SMI technique.
It can be efficiently implemented using currently available
convex optimization software toolboxes based on interior point
algorithms.
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