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Abstract—Within the framework of linear vector Gaussian
channels with arbitrary signaling, the Jacobian of the minimum
mean square error and Fisher information matrices with respect
to arbitrary parameters of the system are calculated in this paper.
Capitalizing on prior research where the minimum mean square
error and Fisher information matrices were linked to informa-
tion-theoretic quantities through differentiation, the Hessian
of the mutual information and the entropy are derived. These
expressions are then used to assess the concavity properties of
mutual information and entropy under different channel condi-
tions and also to derive a multivariate version of an entropy power
inequality due to Costa.

Index Terms—Concavity properties, differential entropy, en-
tropy power, Fisher information matrix, Gaussian noise, Hessian
matrices, linear vector Gaussian channels, minimum mean-square
error (MMSE), mutual information, nonlinear estimation.

I. INTRODUCTION AND MOTIVATION

T HE availability of expressions for the Hessian matrix of
the mutual information with respect to arbitrary parame-

ters of the system is useful from a theoretical perspective but
also from a practical standpoint. In system design, if the mutual
information is to be numerically optimized through a gradient
algorithm as in [1], the Hessian matrix may be used alongside
the gradient in the Newton’s method to speed up the conver-
gence of the algorithm. Additionally, from a system analysis
perspective, the Hessian matrix can also complement the gra-
dient in studying the sensitivity of the mutual information to
variations of the system parameters and, more importantly, in
the cases where the mutual information is concave with respect
to the system design parameters, it can also be used to guarantee
the global optimality of a given design.

In this sense and within the framework of linear vector
Gaussian channels with arbitrary signaling, the purpose of this
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work is twofold. First, we calculate the Hessian matrix of the
mutual information, differential entropy and entropy power
and, second, we study the concavity properties of these quan-
tities. Both goals are intimately related since concavity can be
assessed through the negative semidefiniteness of the Hessian
matrix. As intermediate results of our study, we compute the Ja-
cobian of the minimum mean-square error (MMSE) and Fisher
information matrices, which are interesting results in their own
right and contribute to the exploration of the fundamental links
between information theory and estimation theory.

Initial connections between information- and estimation-the-
oretic quantities for linear channels with additive Gaussian noise
date back to the late fifties: in the proof of Shannon’s entropy
power inequality [2], Stam used the fact that the derivative of
the output differential entropy with respect to the added noise
power is equal to the Fisher information of the channel output
and attributed this identity to De Bruijn. More than a decade
later, the links between both worlds strengthened when Duncan
[3] and Kadota, Zakai, and Ziv [4] represented mutual informa-
tion as a function of the error in causal filtering.

Much more recently, in [5], Guo, Shamai, and Verdú fruitfully
explored further these connections and, among other results,
proved that the derivative of the mutual information and differ-
ential entropy with respect to the signal-to-noise ratio (SNR) is
equal to half the MMSE regardless of the input statistics. The
main result in [5] was generalized to the abstract Wiener space
by Zakai in [6] and by Palomar and Verdú in two different direc-
tions: in [1] they calculated the partial derivatives of the mutual
information with respect to the channel matrix and other arbi-
trary parameters of the system through the chain rule and, in
[7], they represented the derivative of mutual information as a
function of the conditional marginal input given the output for
general channels (not necessarily additive Gaussian).

In this paper we build upon the setting of [1], where loosely
speaking, it was proved that, for the linear vector Gaussian
channel , i) the gradients of the differential
entropy and the mutual information with respect
to functions of the linear transformation undergone by the
input, , are linear functions of the MMSE matrix, , and
ii) the gradient of the differential entropy with respect
to the linear transformation undergone by the noise, , are
linear functions of the Fisher information matrix, . We show
that the previous two key quantities and , which com-
pletely characterize the first-order derivatives, are not enough
to describe the second-order derivatives. For that purpose, we
introduce the more refined conditional MMSE matrix
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Fig. 1. Simplified representation of the relations between the quantities dealt with in this work. The Jacobian and Hessian operators represent first- and
second-order differentiation, respectively.

and conditional Fisher information matrix (when these
quantities are averaged with respect to the distribution of the
output , we recover and ).
In particular, the second-order derivatives depend on
and through the terms and

. See Fig. 1 for a schematic representation
of these relations.

Analogous results to some of the expressions presented in
this paper particularized to the scalar Gaussian channel were
simultaneously derived in [8], [9], where the second and third
derivatives of the mutual information with respect to the SNR
were calculated.

As an application of the obtained expressions, we show con-
cavity properties of the mutual information and derive a multi-
variate generalization of the entropy power inequality (EPI) due
to Costa [10]. Moreover, our multivariate EPI has already found
an application in [11] to derive outer bounds on the capacity re-
gion in multiuser channels with feedback.

This paper is organized as follows. In Section II, the model
for the linear vector Gaussian channel is given and the quan-
tities dealt with in this work are introduced. The main results
of the paper are given in Section III where the expressions for
the Jacobian matrix of the MMSE and Fisher information and
the Hessian matrix of the mutual information and differential
entropy are presented. In Section IV the concavity properties of
the mutual information are studied and, finally, in Section V two
applications of the results derived in this work are given.

Notation: Straight boldface denote multivariate quantities
such as vectors (lowercase) and matrices (uppercase). Upper-
case italics denote random variables, and their realizations are
represented by lowercase italics. The sets of -dimensional
symmetric, positive semidefinite, and positive definite matrices
are denoted by , and , respectively. The elements of
a matrix are represented by or interchangeably,
whereas the elements of a vector are represented by .
The operator represents a column vector with the
diagonal entries of matrix and represent
a diagonal matrix whose nonzero elements are given by the
diagonal elements of matrix and by the elements of vector

, respectively, and represents the vector obtained by
stacking the columns of . For symmetric matrices,
is obtained from by eliminating the repeated elements
located above the main diagonal of . The Kronecker matrix

product is represented by and the Schur (or Hadamard)
element-wise matrix product is denoted by . The su-
perscripts , and , denote transpose, Hermitian,
and Moore–Penrose pseudoinverse operations, respectively.
With a slight abuse of notation, we consider that when square
root or multiplicative inverse are applied to a vector, they act
upon the entries of the vector, we thus have and

.

II. SIGNAL MODEL

We consider a general discrete-time linear vector Gaussian
channel, whose output is represented by the model

(1)

where is the zero-mean channel input vector with co-
variance matrix , the matrix specifies the linear
transformation undergone by the input vector, and rep-
resents a zero-mean Gaussian noise with nonsingular covariance
matrix .

The channel transition probability density function corre-
sponding to the channel model in (1) is

(2)

and the marginal probability density function of the output is
given by , which is an infinitely differ-
entiable continuous function of regardless of the distribution
of the input vector thanks to the smoothing properties of the
added noise [10, Sec. II].

At some points, it may be convenient to write and
also express the noise vector as , where ,
such that , and where the noise covariance matrix

has an inverse so that (2) is meaningful.
In the following, we describe the information- and estima-

tion-theoretic quantities whose relations we are interested in.

A. Differential Entropy and Mutual Information

The differential entropy of the continuous random vector is
defined as [12].1 For the linear vector

1Throughout this paper we work with natural logarithms and thus nats are
used as information units.
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Gaussian channel in (1), the input–output mutual information is
[12]

(3)

B. Minimum Mean Square Error (MSE) Matrix

We consider the estimation of the input signal based on the
observation of a realization of the output . The estimator
that simultaneously achieves the minimum mean square error
(MSE) for all the components of the estimation error vector is
given by the conditional mean estimator and
the corresponding MSE matrix, referred to as the MMSE matrix,
is

(4)

An alternative and useful expression for the MMSE matrix
can be obtained by considering first the MMSE matrix condi-
tioned on a specific realization of the output , which is
denoted by and defined as

(5)

Observe from (5) that is a positive semidefinite matrix.
Finally, the MMSE matrix in (4) can be obtained by taking
the expectation of with respect to the distribution of the
output, .

C. Fisher Information Matrix

Besides the MMSE matrix, another quantity that is closely
related to the differential entropy is the Fisher information ma-
trix. For an arbitrary random vector , the Fisher information
matrix with respect to a translation parameter is [13]

(6)

where is the Jacobian operator. This operator together with the
Hessian operator, , and other definitions and conventions used
for differentiation with respect to multidimensional parameters
are described in Appendixes A and B.

The expression of the Fisher information in (6) in terms of the
Jacobian of can be transformed into an expression in
terms of its Hessian matrix, thanks to the logarithmic identity

(7)

together with ,
which follows directly from the expression for in (75)
in Appendix C. The alternative expression for the Fisher infor-
mation matrix is then

(8)

Similarly to the previous section with the MMSE matrix, it
will be useful to define a conditional form of the Fisher infor-
mation matrix , in such a way that . At
this point, it may not be clear which of the two forms (6) or (8)

will be more useful for the rest of the paper; we advance that
defining based on (8) will prove more convenient

(9)

where the second equality is proved in Lemma C.4 in
Appendix C and where we have .

D. Prior Known Relations

The first known relation between the above described quanti-
ties is the De Bruijn identity [2] (see also the alternative deriva-
tion in [5]), which couples the Fisher information with the dif-
ferential entropy according to

(10)

where in this case . A multivariate extension of
the De Bruijn identity was found in [1] as

(11)

In [5], the more canonical operational measures of mutual
information and MMSE were coupled through the identity

(12)

which was generalized to the multivariate case in [1], yielding

(13)

From these previous existing results, we realize that the dif-
ferential entropy function is related to the Fisher
information matrix through differentiation with respect to
the transformation undergone by the Gaussian noise as in
(11) and that the mutual information is related
to the MMSE matrix through differentiation with respect to
the transformation undergone by the signal as in (13) (see
also Fig. 1). A comprehensive account of other relations can be
found in [5].

Since we are interested in calculating the Hessian matrix of
differential entropy and mutual information, in the light of the
results in (11) and (13), it is instrumental to first calculate the
Jacobian matrix of the MMSE and Fisher information matrices,
as considered in the next section.

III. JACOBIAN AND HESSIAN RESULTS

A. Jacobians of the Fisher Information and MMSE Matrices

As a warm-up, consider first our signal model with Gaussian
signaling, . In this case, the conditional Fisher
information matrix defined in (9) does not depend on the real-
ization of the received vector and is (e.g., [14, Appendix 3C])

(14)

Consequently, we have that .
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The Jacobian matrix of the Fisher information matrix with
respect to the noise transformation can be obtained as

(15)

(16)

(17)

(18)

where (15) follows from the Jacobian chain rule in Lemma B.5;
in (16) we have applied Lemmas B.7.4 and B.7.5 with being
the duplication matrix defined in Appendix A2; and finally (17)
follows from the fact that ,
which can be obtained from (56) and (58) in Appendix A.

In the following theorem, we generalize (18) for the case of
arbitrary signaling.

Theorem 1 (Jacobian of the Fisher Information Matrix):
Consider the signal model , where is an
arbitrary deterministic matrix, the signaling is arbitrarily
distributed, and the noise vector is Gaussian and independent
of the input . Then, the Jacobian of the Fisher information
matrix of the -dimensional output vector is

(19)

where is defined in (9).
Proof: See Appendix D.

Remark 1: Due to the fact that, in general, the conditional
Fisher information matrix does depend on the particular
value of the observation , it is not possible to express the ex-
pectation of the Kronecker product as the Kronecker product of
the expectations, as in (17) for the Gaussian signaling case.

Now that Jacobian of the Fisher information matrix has been
presented, we proceed with the Jacobian of the MMSE matrix.

Theorem 2 (Jacobian of the MMSE Matrix): Consider the
signal model , where is an arbitrary determin-
istic matrix, the -dimensional signaling vector is arbitrarily
distributed, and the noise vector is Gaussian and independent
of the input . Then, the Jacobian of the MMSE matrix of the
input vector is

(20)

where is defined in (5).
Proof: See Appendix D.

Remark 2: In light of the two results in Theorems 1 and 2, it
is now apparent that plays an analogous role in the differ-
entiation of the Fisher information matrix as the one played by
the conditional MMSE matrix when differentiating the
MMSE matrix, which justifies the choice made in Section II.C

2The matrix� appears in (18) and in many successive expressions because
we are explicitly taking into account the fact that � is a symmetric matrix.

of identifying with the expression in (8) and not with the
expression in (6).

B. Jacobians With Respect to Arbitrary Parameters

With the basic results for the Jacobian of the MMSE and
Fisher information matrices in Theorems 1 and 2, the Jacobians
with respect to arbitrary parameters of the system can be found
through the chain rule for differentiation. Precisely, we are inter-
ested in considering the case where the linear transformation un-
dergone by the signal is decomposed as the product of two linear
transformations, , where represents the channel,
which is externally determined by the propagation environment
conditions, and represents the linear precoder, which is spec-
ified by the system designer.

Theorem 3 (Jacobians With Respect to Arbitrary Parame-
ters): Consider the signal model , where

, and , with , are arbi-
trary deterministic matrices, the signaling is arbitrarily
distributed, the noise is Gaussian, independent of the
input , and has covariance matrix , and the total noise, de-
fined as , has a positive definite covariance
matrix given by . Then, the MMSE and Fisher
information matrices satisfy

(21)

(22)

(23)

(24)

Proof: See Appendix D.

C. Hessian of Differential Entropy and Mutual Information

Now that we have obtained the Jacobians of the MMSE and
Fisher information matrices, we will capitalize on the results in
[1] to obtain the Hessians of the mutual information
and the differential entropy .

Lemma 1 (Entropy Jacobians [1]): Consider the setting of
Theorem 3. Then, the differential entropy satisfies

(25)

(26)

(27)

(28)

(29)

Remark 3: Equations (25) and (26) are also valid if the dif-
ferential entropy is replaced by the mutual information

. Alternatively, the expressions (27), (28), and (29) do
not hold verbatim for the mutual information because, in that
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case, the differential entropy of the noise vector in (3) does de-
pend on and, implicitly, on and . Then, applying basic
Jacobian results from [15, Ch. 9], we have

(30)

(31)

(32)

With Lemma 1 at hand, and the expressions obtained in the
previous section for the Jacobian matrices of the Fisher infor-
mation and the MMSE matrices, we are ready to calculate the
Hessian matrix.

Theorem 4 (Entropy Hessians): Consider the setting of The-
orem 3. Then, the differential entropy of the output vector ,

, satisfies

(33)

(34)

(35)

(36)

(37)

where is the symmetrization matrix defined in Appendix A.
Proof: See Appendix D.

Remark 4: The Hessian results in Theorem 4 are given for
the differential entropy. The Hessian matrices for the mutual
information can be similarly derived as

, and

(38)

(39)

(40)

D. Hessian of Mutual Information With Respect to the
Transmitted Signal Covariance

In the previous sections we have purposely avoided calcu-
lating the Jacobian and Hessian matrices with respect to co-

variance matrices of the signal such as the squared precoder
, the transmitted signal covariance ,

or the input signal covariance .
The reason is that, in general, the mutual information, the dif-

ferential entropy, and the MMSE are not functions of , or
alone. It can be seen, for example, by noting that, given ,

the corresponding precoder matrix is specified up to an arbi-
trary orthonormal transformation, as both and , with
being orthonormal, yield the same squared precoder . Now,
it is easy to see that the two precoders and need not yield
the same mutual information, and, thus, the mutual information
is not well defined as a function of alone because it cannot
be uniquely determined from . The same reasoning applies
to the differential entropy and the MMSE matrix.

There are, however, some particular cases where the quanti-
ties of mutual information and differential entropy are indeed
functions of , or . We have, for example, the partic-
ular case where the signaling is Gaussian, . In this case,
the mutual information is given by

(41)

which is, of course, a function of the transmitted signal covari-
ance , a function of the input signal covariance

, and also a function of the squared precoder
when . Upon direct double differentiation with respect
to, e.g., we obtain [15, Ch. 9 and 10]

(42)

Another particular case where the mutual information is a
function of the transmit covariance matrices is in the low-SNR
regime [16]. Assuming that , Prelov and Verdú
showed that [16, Theorem 3]

(43)

where the dependence of the mutual information with respect to
is explicitly shown. The Hessian of the mutual information,

for this case becomes [15, Ch. 9 and 10]

(44)
Even though we have shown two particular cases where the

mutual information is a function of the transmitted signal co-
variance matrix , it is important to highlight that care must
be taken when calculating the Jacobian matrix of the MMSE
and the Hessian matrix of the mutual information or the differ-
ential entropy as, in general, these quantities are not functions
of , nor . In this sense, the results in [1, Theorem 2,
eq. (23), (24), (25); Cor. 2, eq. (49); Theorem 4, eq. (56)] only
make sense when the mutual information is well defined as a
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function of the signal covariance matrix (such as when the sig-
naling is Gaussian or the SNR is low).

IV. MUTUAL INFORMATION CONCAVITY RESULTS

As we have mentioned in the introduction, studying the con-
cavity of the mutual information with respect to design param-
eters of the system is important from both analysis and design
perspectives.

The first candidate as a system parameter of interest
that naturally arises is the precoder matrix in the signal
model . However, one realizes from the
expression in Remark 4 of Theorem 4, that
for a sufficiently small the Hessian is approximately

, which, from Lemma H.3 is
positive definite and, consequently, the mutual information is
not concave in (actually, it is convex). Numerical compu-
tations show that the nonconcavity of the mutual information
with respect to also holds for nonsmall .

The next candidate is the transmitted signal covariance matrix
, which, at first sight, is better suited than the precoder as it

is well known that, for the Gaussian signaling case, the mutual
information as in (41) is a concave function of the transmitted
signal covariance . Similarly, in the low SNR regime we have
that, from (44), the mutual information is also a concave func-
tion with respect to .

Since in this work we are interested in the properties of the
mutual information for all the SNR range and for arbitrary sig-
naling, we wish to study if the above results can be generalized.
Unfortunately, as discussed in the previous section, the first dif-
ference of the general case with respect to the particular cases
of Gaussian signaling and low SNR is that the mutual informa-
tion is not well defined as a function of the transmitted signal
covariance only.

Having discarded the concavity of the mutual information
with respect to and , in the following subsections we study
the concavity of the mutual information with respect to other
parameters of the system.

For the sake of notation we define the channel covariance ma-
trix as , which will be used in the remainder
of the paper.

A. Concavity in the SNR

The concavity of the mutual information with respect to the
SNR for arbitrary input distributions can be derived as a corol-
lary from Costa’s results in [10], where he proved the concavity
of the entropy power of a random variable consisting of the sum
of a signal and Gaussian noise with respect to the power of the
signal. As a direct consequence, the concavity of the entropy
power implies the concavity of the mutual information in the
signal power, or, equivalently, in the SNR.

In this section, we give an explicit expression of the Hessian
of the mutual information with respect to the SNR, which was
previously unavailable for vector Gaussian channels.

Corollary 1 (Mutual Information Hessian With Respect to the
SNR): Consider the model , with and
where all the terms are defined as in Theorem 3. It then follows
that the mutual information is a concave function with respect
to , .

Moreover, we have that

(45)

Proof: See Appendix G.

Remark 5: Observe that (45) agrees with [9, Prop. 5] for
scalar Gaussian channels.

In the following section, we extend the concavity result in
Corollary 1 to more general quantities than the scalar SNR.

B. Concavity in the Squared Singular Values of the Precoder
When the Precoder Diagonalizes the Channel

Consider the eigendecomposition of the channel covari-
ance matrix , where is an
orthonormal matrix and the vector contains nonnega-
tive entries in no particular order. Note that, in the case where

, then elements of vector
are zero.

Let us now consider the singular value decomposition (SVD)
of the precoder matrix . Defining

, we have that the vector is -dimensional,
and the matrices and contain
orthonormal columns such that and

, respectively.
In the following theorem we characterize the concavity prop-

erties of the mutual information with respect to the entries of the
squared singular values vector for the particular case where
the left singular vectors of the precoder coincide with the first

eigenvectors of the channel covariance matrix.

Theorem 5 (Mutual Information Hessian With Respect
to the Squared Singular Values of the Precoder): Consider

, where all the terms are defined as in Theorem
3, for the particular case where the first eigenvectors of the
channel covariance matrix and the left singular vectors of
the precoder coincide. It then follows that the mu-
tual information is a concave function of the squared singular
values of the precoder , .

Moreover, the Hessian of the mutual information with respect
to is

(46)

where we have defined .
Proof: See Appendix G.

Remark 6: Observe from the expression for the Hessian in
(46) that for the case where the channel covariance matrix
is rank deficient, , then there may be some ele-
ments of vector that are zero. In this case, the corresponding
rows and columns of the Hessian matrix in (46) are also zero.

We now generalize a result obtained in [17] for parallel chan-
nels were it was proved that the mutual information is concave
in the power allocation for the case where the entries of the sig-
naling vector are assumed independent (this last assumption
is actually unnecessary as shown next).
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TABLE I
SUMMARY OF THE CONCAVITY TYPE OF THE MUTUAL INFORMATION

( INDICATES CONCAVITY,� INDICATES NON-CONCAVITY, AND�� INDICATES THAT IT DOES NOT APPLY)

Corollary 2 (Mutual Information Concavity With Respect to
the Power Allocation in Parallel Channels): Particularizing
Theorem 5 for the case where the channel , the precoder

, and the noise covariance are diagonal matrices, which
implies that , it follows that the mutual
information is a concave function with respect to the power
allocation for parallel noninteracting channels for an arbitrary
distribution of the signaling vector .

C. General Negative Results

In the previous section we have proved that the mutual infor-
mation is a concave function of the squared singular values of
the precoder matrix for the case where the left singular vectors
of the precoder coincide with the eigenvectors of the channel
correlation matrix, . For the general case where these vectors
do not coincide, the mutual information is not a concave func-
tion of the squared singular values of the precoder. This fact is
formally established through the following counterexample.

Counterexample 1 (General Nonconcavity of the Mutual In-
formation): Consider , where all the terms are
defined as in Theorem 3. It then follows that, in general, the
mutual information is not a concave function with respect to the
squared singular values of the precoder .

Proof: See Appendix G.

D. Concavity Results Summary

A summary of the different concavity results (positive and
negative) for the mutual information as a function of the con-
figuration of the linear vector Gaussian channel can be found in
Table I.

V. APPLICATIONS

A. Multivariate Extension of Costa’s Entropy Power Inequality

The entropy power of the random vector was first
introduced by Shannon in his seminal work [18] and, since then,
is defined as .

Costa proved in [10] that, provided that the random vector
is white Gaussian distributed, then

(47)

for any . As Costa noted, the above entropy power
inequality (EPI) is equivalent to the concavity of the entropy
power function with respect to the parameter ,
or, formally, to .3 Additionally, in his paper
Costa showed that the EPI is also valid when the Gaussian vector

is not white.
Due to its inherent interest and to the fact that the proof by

Costa was rather involved, simplified proofs of his result have
been subsequently given in [19]–[22]. Moreover, in [22] Rioul
proved a version of Costa’s EPI where the parameter is mul-
tiplying the arbitrarily distributed random vector (instead
of ):

(48)

Observe that in (48) plays the role of a scalar precoder. We
next consider an extension of (48) to the case where the scalar
precoder is replaced by a multivariate precoder
and a channel for the particular case where the pre-
coder left singular vectors coincide with the first channel
covariance eigenvectors.

Theorem 6 (Costa’s Multivariate EPI): Consider
, where all the terms are defined as in Theorem

3, for the particular case where the first eigenvectors of the
channel covariance matrix and the left singular vectors
of the precoder coincide. It then follows that the
entropy power is a concave function of .

Moreover, the Hessian matrix of the entropy power is

(49)

where we recall that represents a column vector
with the diagonal entries of the matrix and that

.

3The equivalence between (47) and ����� �
�
����� � � is due to the fact

that the function������
�
����� is twice differentiable almost everywhere thanks

to the smoothing properties of the added Gaussian noise.
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Proof: See Appendix G.

Remark 7: For the case where and we
recover our earlier result in [23].

Another possibility of multivariate generalization of Costa’s
EPI would be to study the concavity of with respect
to the covariance of the noise vector . This seems to be more
elusive and has not been further elaborated herein.

B. Precoder Design

The concavity results presented in Theorem 5 can be used to
numerically compute the optimal squared singular values of
the precoder that, under an average
transmitted power constraint, maximizes the mutual informa-
tion assuming that the right eigenvector matrix

is given and held fixed and that the optimal left eigenvector
matrix of the precoder is used, i.e., where con-
tains the eigenvectors of the covariance matrix of the channel

.4 The details of the optimization algorithm are outside the
scope of the present paper and are, thus, omitted.

APPENDIX

A. Special Matrices Used in Multivariate Differentiation

In this Appendix, we present four matrices that are often en-
countered when calculating Hessian matrices. The definitions of
the commutation , symmetrization , and duplication
matrices have been taken from [15] and the reduction matrix
has been defined by the authors of the present work.

Given any matrix , there exists a unique permuta-
tion matrix independent of , which is called
commutation matrix, that satisfies

and (50)

Thus, the entries of the commutation matrix are given by

(51)

The main reason why we have introduced the commutation
matrix is due to the property from which it obtains its name,
as it enables us to commute the two matrices of a Kronecker
product [15, Ch. 3, Theorem 9],

(52)

where we have considered and .
We also define for the square case. An important

property of the square matrix is given next.

Lemma A.1: Let and . Then,

(53)

(54)

with , and .

4The optimality of� � � when optimizing the mutual information fol-
lows from a similar derivation as in [24, Appendix A].

Proof: Both equalities follow straightforwardly from the
definition in [25, Sec. 4.2]. In the calculation of the entries of

, the expression for the elements of in (51) has
to be used.

When calculating Jacobian and Hessian matrices, the form
is usually encountered. Hence, we define the sym-

metrization matrix , which is singular and
fulfills and . The name
of the symmetrization matrix comes from the fact that given any
square matrix , then

(55)

The last important property of the symmetrization matrix is

(56)

which follows from the definition of together with (52).
Another important matrix related to the calculation of Ja-

cobian and Hessian matrices, specially when symmetric ma-
trices are involved, is the duplication matrix . From [15,
Sec. 3.8], the duplication matrix fulfills

, for any -dimensional symmetric matrix
. The duplication matrix takes its name from the fact that it

duplicates the entries of which correspond to off-diag-
onal elements of to produce the elements of .

Since has full column rank, it is possible to invert the
transformation to obtain

(57)

The most important properties of the duplication matrix are [15,
Ch. 3, Theorem 12]

(58)

The last one of the matrices introduced in this Appendix is
the reduction matrix . The entries of the reduction
matrix are defined as

(59)

from which it is easy to verify that the reduction matrix fulfills
and . However, the most important

property of the reduction matrix is that it can be used to reduce
the Kronecker product of two matrices to their Schur product as
it is detailed in the next lemma.

Lemma A.2: Let . Then

(60)

Proof: The proof follows easily from the expression for
the elements of the Kronecker product in Lemma A.1 and the
expression for the elements of the reduction matrix in (59).

Finally, we present two basic lemmas concerning the Kro-
necker product and the operator.
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Lemma A.4: Let , and be four matrices such that
the products and are defined. Then,

.
Proof: See [15, Sec. 2.2].

Lemma A.4: Let , and be three matrices such that the
product is defined. Then,

(61)

Proof: See [15, Ch. 2, Theorem 2.2].

B. Conventions Used for Jacobian and Hessian Matrices

In this work we make extensive use of differentiation of
matrix functions with respect to a matrix argument . From
the many possibilities of displaying the partial derivatives

, we will stick to the “good notation”
introduced by Magnus and Neudecker in [15, Sec. 9.4]] which
is briefly reproduced next for the sake of completeness.

Definition B.1: Let be a differentiable real matrix
function of an matrix of real variables . The Jacobian
matrix of at is the matrix

(62)

Remark B.2: To properly deal with the case where is a
symmetric matrix, the operator in the numerator in (62) has
to be replaced by a operator to avoid obtaining repeated
elements. Similarly, has to replace in the denominator
in (62) for the case where is a symmetric matrix. For practical
purposes, it is enough to calculate the Jacobian without taking
into account any symmetry properties and then add a left factor

to the obtained Jacobian when is symmetric and/or a right
factor when is symmetric. This proceeding will become
clearer in the examples below.

Definition B.3: Let be a twice differentiable real
matrix function of an matrix of real variables . The
Hessian matrix of at is the matrix

(63)

(64)

One can verify that the obtained Hessian matrix for the matrix
function is the stacking of the Hessian matrices corre-
sponding to each individual element of vector .

Remark B.4: Similarly to the Jacobian case, when or
are symmetric matrices, the operator has to replace the
operator where appropriate in (64).

One of the major advantages of using the notation in [15] is
that a simple chain rule can be applied for both the Jacobian and
Hessian matrices, as detailed in the following lemma.

Lemma B.5 ([15, Ch. 5, Theorem 8 and Ch. 6, Theorem 9]):
Let be a twice differentiable real matrix function of
a real matrix argument. Let be a twice differentiable

real matrix function of an matrix of real variables .

Define . Using , the Jacobian
and Hessian matrices of at are

(65)

(66)

The notation introduced above unifies the study of scalar
, vector , and matrix functions of scalar
, vector , or matrix arguments into the study of

vector functions of vector arguments through the use of the
and operators. However, the idea of arranging the partial
derivatives of a scalar function of a matrix argument into
a matrix rather than a vector is quite appealing and sometimes
useful, so we will also make use of the notation described next.

Definition B.6: Let be differentiable scalar function of an
matrix of real variables . The gradient of at

is the matrix

(67)

It is easy to verify that .
We now give expressions for the most common Jacobian and

Hessian matrices encountered during our developments.

Lemma B.7: Consider ,
, and , such that is a function of . Then,

the following holds:
1) If , then . If, in addition,

is a function of , then we have
.

2) If , then .
3) If , with being a symmetric matrix, then

.
4) If , then , where is a

square invertible matrix.
5) If , then .

Proof: See [15, Ch. 9].

C. Differential Properties of , and

In this Appendix we present the lemmas which are used in
Appendixes E and F for the proofs of Theorems 1 and 2.

In the proofs of the following lemmas, we interchange the
order of differentiation and expectation, which can be justified
following similar steps as in [1, Appendix B], where it was as-
sumed that the signaling had finite second-order moments.5

Lemma C.1: Let , where is arbitrarily dis-
tributed and is a zero-mean Gaussian random variable with
covariance matrix and independent of . Then, the proba-
bility density function satisfies

(68)

Proof: First, we recall that .
Thus, . The computation of

5From recent results in [8] it is apparent that the finiteness assumption on the
second order moments can be dropped.
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the inner the gradient can be performed by
replacing by and by in (2), together with

(69)

(70)

where is a fixed vector of the appropriate dimension and where
we have used [15, Ch. 9, Sec. 9, Exercise 3] and the chain rule in
Lemma B.5 in (69) and, [15, Ch. 9, Sec. 10, Exercise 4] in (70).
With these expressions at hand, the gradient can be
written as

(71)

To complete the proof, we need to calculate the Hessian ma-
trix, . First consider the following two Jacobians

(72)

(73)

which follow directly from [15, Ch. 9, Table 3] and [15, Ch. 9,
Sec. 12]. Now, from (72), we can first obtain the Jacobian row
vector as

(74)

Recalling the expression in (73) and that
the Hessian matrix becomes

(75)

By inspection from (71) and (75) the result follows.

Lemma C.2: Let , where is arbitrarily dis-
tributed and is a zero-mean Gaussian random variable with
covariance matrix and independent of . Then, the proba-
bility density function satisfies

(76)

Proof: First we write

(77)

where we have used (72). Now, we simply need to notice that

(78)

(79)

where ,
which follows from [15, Ch. 9, Table 4]. Finally, the result fol-
lows from .

Lemma C.3: Let , where is arbitrarily dis-
tributed and is a zero-mean Gaussian random variable with
covariance matrix and independent of . Then, the condi-
tional expectation satisfies

(80)

Proof:

(81)

(82)

(83)

(84)

where, in (83) we have used the expression in (77) for
and also that, from (74),

(85)

(86)

Now, expanding the definition in (5) for the conditional MMSE
matrix , the result in the lemma follows.

Lemma C.4: Let , where is arbitrarily dis-
tributed and is a zero-mean Gaussian random variable with
covariance matrix and independent of . Then, the Jaco-
bian and Hessian of satisfy

(87)

(88)

Proof: From the expression in (74) we can write

(89)

(90)

Now, the Hessian can be computed as

(91)

(92)

(93)

where (93) follows from Lemma C.3.

Lemma C.5: Let , where is arbitrarily dis-
tributed (with -th element denoted by ) and is a zero-
mean Gaussian random variable with covariance matrix and
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independent of . Then, the conditional expectation
satisfies

(94)

Proof:

(95)

(96)

(97)

where (96) follows from Lemma C.2 and from (79).

D. Proofs of Theorems 1, 2, 3, and 4

Proof of Theorem 1: Since is a symmetric matrix, its
Jacobian is

(98)

(99)

(100)

(101)

(102)

where (99) follows from (57) and (100) follows from Lemma
B.7.2. The expression for is derived in Appendix E,
which yields (101) and (102) follows from Lemma A.3.

Proof of Theorem 2: The proof is analogous to that of The-
orem 1 with the appropriate notation adaptation. The calculation
of can be found in Appendix F.

Proof of Theorem 3: The Jacobians and
follow from the Jacobian calculated in Theorem 2 ap-
plying the chain rules and

, where and, from Lemma B.7.1, we
have that and .

Similarly, the Jacobian can be calculated by applying
, where

as in Lemma B.7.5. Recalling that, in this case, the matrix is
a dummy variable that is used only to obtain through
the chain rule, the factor can be eliminated from
both sides of the equation.

Finally, the Jacobian follows from the chain rule
, with

(see Lemma B.7.3), and using
.

Proof of Theorem 4: The developments leading to the
expressions for the Hessian matrices , and

follow a very similar pattern. Consequently, we will
present only one of them here.

Consider the Hessian , from the expression for the
Jacobian in (25) it follows that

(103)

(104)

where in (104) we have used Lemma B.7.1 adding the matrix
because is a symmetric matrix. The final expression

for is obtained by plugging in (104) the expression for
obtained in Theorem 3.

From (28), the expression for becomes

(105)

(106)

(107)

where, in last equality, we have used Lemma B.7.2. The result
now follows from the expression for given in Theorem
3.

Finally, the Hessian matrix can be computed from
its Jacobian in (29) as

(108)

(109)

where we have used Lemmas A.4 and B.7.2. The expression for
can be found in Theorem 3.

E. Calculation of

Consider the expression for the entries of the Jacobian of
: , such that

and , which will be used throughout
this proof. From (8), the entries of the Fisher information matrix
are

(110)

We now differentiate the expression above with respect to the
entries of the matrix and we get

(111)

where the interchange of the order of integration and differen-
tiation can be justified from the Dominated Convergence The-
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orem following similar steps as in [1, Appendix B]. Now, using
Lemma C.1, the entries of the Jacobian matrix are

(112)

Expanding the expression for we get

(113)

Integrating by parts the first term in (113) twice, we obtain6

(114)

and applying the scalar version of the logarithm identity in (7),
the second term in the right hand side of (113) becomes

(115)

Integrating by parts the last term in (115), we have

(116)

(117)

6From the expression ��� � ��� ���, the identity in (114) (and other
similar expressions in the following) is obtained by proving that the �� term
vanishes. The detailed proof is omitted for the sake of space. A similar derivation
for the scalar case can be found in [26].

Plugging (114), (115), and (117) into (113), we finally obtain

Now, recalling that and identifying the
elements of the two matrices and with the
terms in last equation, we obtain

(118)

Finally, as and ap-
plying Lemma A.1, it can be shown that

(119)

(120)

F. Calculation of

Consider the expression for the entries of the matrix
, from which it

follows that

(121)

where, throughout this proof and
and where, as in Appendix E, the justification of the interchange
of the order of derivation and integration and two other inter-
changes below follow similar steps as in [1, Appendix B].

Observe that the second and third terms in (121) have the
same structure and, thus, we will deal with them jointly. The
first term in (121) can be rewritten as

(122)

where we have used Lemma C.2. Using Lemma C.5, the second
term in (121) can be computed as

(123)
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Plugging (122) and (123) into (121) we can write

(124)

The first term in (124) can be reformulated as

(125)

(126)

where in the last step we have integrated by parts. Making use
of Lemma C.3 yields

(127)

We now proceed to the computation of the second and third
terms in (124). We have

(128)

(129)

(130)

where in (130) we have applied Lemma C.3.
Plugging (127) and (130) into (124), we finally have

(131)

From and ap-
plying Lemma A.1, the desired result follows similarly as in
(120) in Appendix E.

G. Proofs of Concavity Results

Proof of Corollary 1: First, we consider the result in
[1, Corollary 1], . Choosing

and applying Theorem 4 and Lemma B.5 we
obtain

(132)

(133)

(134)

where we have used Lemma A.4 and the fact that, for symmetric
matrices, as in (55).

From (134), it readily follows that the mutual information is
a concave function of the parameter because, from Lemma
H.3 we have that , and, consequently,

. Finally, applying again Lemma A.4 and
, the desired expression follows.

Proof of Theorem 5: To simplify the notation, in this proof
we consider , which implies that and thus .
The derivation for follows similar steps.

The Hessian of the mutual information can be ob-
tained from the Hessian chain rule in Lemma B.5 as

(135)

Now we need to calculate and . We have

(136)

(137)

(138)

where, in (137), we have used Lemmas A.4 and B.7.2 and where
the last step follows from

(139)

with and from the definition of the reduction
matrix in (59).

Following steps similar to the derivation of , the Hessian
matrix is obtained according to

(140)

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 17, 2009 at 09:05 from IEEE Xplore.  Restrictions apply.



3626 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 8, AUGUST 2009

Plugging (138) and (140) in (135) together with the expres-
sions for the Jacobian matrix and the Hessian matrix

given in Remark 3 of Lemma 1 and in Remark 4 of
Theorem 4, respectively, and operating we obtain

(141)

where it can be noted that the dependence of on
has disappeared.

Now, applying Lemma A.2, the first term in (141) becomes

(142)

(143)

whereas the third term in (141) can be expressed as

(144)

(145)

where in (144) we have used that, for any square matrix
and

.
Now, from (143) and (145) we see that the first and third

terms in (141) cancel out and, recalling that
, the expression for simplifies to

(146)

Now, from simple inspection of the expression in (146) and re-
calling the properties of the Schur product, the desired result
follows.

Proof of Counterexample 1: We present a two-dimensional
counterexample. Assume that the noise is white and
consider the following channel and precoder

(147)

where and assume that the distribution for the signal
vector has two equally likely mass points,

(148)

Accordingly, we define the noiseless received vector as
, for , which yields

(149)

We now define the mutual information for this counterex-
ample as . We use the
fact that, as , the mutual information can be expressed
as an increasing function of the squared distance of the two
only possible received vectors ,
which is denoted by .

For a fixed value of , we want to study the concavity of
with respect to . In order to do so, we

restrict ourselves to the study of concavity along straight lines
of the type , with , which is sufficient to
disprove the concavity.

Operating with the received vectors, we obtain

(150)

(151)

from which it readily follows that
, which contradicts the concavity hypothesis.

Proof of Theorem 6: To simplify the notation, in this proof
we consider , which implies that and thus

. Moreover, we assume that the elements of are sorted in
decreasing order. The derivation for the case where or
the elements of are not sorted is similar.

First, let us prove (49). From the definition of the entropy
power and applying the chain rule for Hessians in Lemma B.5
we obtain

(152)

Now, from [5, eq. (61)] we can write that
. Incorporating the expression

for calculated in Theorem 5, the result in (49) follows.
To prove the negative semidefiniteness of the expres-

sion in (152), we first define the positive semidefinite ma-
trix , which is obtained by selecting the first

columns and rows of the positive semidefinite
matrix . With this definition, it
is now easy to see that the expression

(153)

coincides (up to the factor ) with the first rows and
columns of the Hessian matrix in (152). Recalling that
the remaining elements of the Hessian matrix are zero
due to the presence of the matrix , in order to prove the
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negative semidefiniteness of it is sufficient to show
that (153) is negative semidefinite.

Now, we apply Proposition H.9 to , yielding

(154)

Taking the expectation in both sides of (154), we have

where in last inequality we have used that
, as and .

H. Matrix Algebra Results

In this Appendix we present a number of lemmas and propo-
sitions that are used throughout this paper.

Lemma H.1 (Bhatia [27, Lemma 1.3.6]): Let be a
positive semidefinite matrix, . Then

Proof: Since , consider and write

Lemma H.2 (Bhatia [27, Exercise 1.3.10]): Let be
a positive definite matrix, . Then

(155)

Proof: Consider again , then we have
. Now, simply write (155) as

which, from Sylvester’s law of inertia for congruent matrices
[27, Ch. 1, Sec. 2] and Lemma H.1, is positive semidefinite.

Lemma H.3: If the matrices and are positive (semi)def-
inite, then so is the product . In other words, the class of
positive (semi)definite matrices is closed under the Kronecker
product.

Proof: See [28, Fact 7.4.15].

Corollary H.4 (Schur Theorem): The class of positive
(semi)definite matrices is also closed under the Schur matrix
product, .

Proof: The proof follows from Lemma H.3 by noting that
the Schur product is a principal submatrix of the Kro-
necker product as in [28, Prp. 7.3.1] and that any prin-
cipal submatrix of a positive (semi)definite matrix is also posi-
tive (semi)definite, [28, Prop. 8.2.6 and 8.2.7]. Alternatively, see
[29, Theorem 7.5.3] or [25, Theorem 5.2.1] for a completely dif-
ferent proof.

Lemma H.5 (Schur complement): Let the matrices
and be positive definite, and , and not
necessarily of the same dimension. Then the following state-
ments are equivalent

1)

2) ;
3) ;

where is any arbitrary matrix.
Proof: See [29, Theorem 7.7.6] and the second exercise

following it or [28, Prp. 8.2.3].

With the above lemmas at hand, we are now ready to prove
the following proposition.

Proposition H.6: Consider two positive definite matrices
and of the same dimension. Then it follows

that

(156)

Proof: From Lemmas H.1, H.2, and H.4, it follows that

(157)

Now, from Lemma H.5, the result follows directly.

Corollary H.7: Let be a positive definite matrix.
Then

(158)

Proof: Particularizing the result in Proposition H.6 with
and pre- and post-multiplying it by and we obtain

. The result
in (158) now follows straightforwardly from the fact

, [30] (see also [28, Fact 7.6.10], [25, Lemma 5.4.
2(a)]). Note that is symmetric and thus and

.

Remark H.8: Note that the proof of Corollary H.7 is based
on the result of Proposition H.6 in (156). An alternative proof
could follow from a different inequality by Styan in [31]

where, in this case, is constrained to have ones in its main
diagonal, i.e., .

Proposition H.9: Consider now the positive semidefinite ma-
trix . Then
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Proof: For the case where is positive definite,
from (158) in Corollary H.7 and Lemma H.5, it follows that

Applying again Lemma H.5, we get

(159)

Now, assume that is positive semidefinite. We thus
define and consider the positive definite matrix .
From (159), we know that

Taking the limit as tends to , the validity of (159) for positive
semidefinite matrices follows from continuity.
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