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G
ame theory is a field of applied mathematics that 
describes and analyzes scenarios with interac-
tive decisions. In recent years, there has 
been a growing interest in adopting coop-
erative and noncooperative game theo-

retic approaches to model many communications and 
networking problems, such as power control and 
resource sharing in wireless/wired and peer-to-
peer networks and routing/flow control in com-
munication networks. A more general 
framework suitable for investigating and 
solving various equilibrium models, even 
when classical game theory may fail, is 
known to be the variation inequality 
(VI) problem that constitutes a very 
general class of problems in non-
linear analysis. The goal of this 
article is to show how many chal-
lenging unsolved resource allocation prob-
lems in the emerging field of cognitive radio (CR) 
networks fit naturally either in the game theoretical paradigm 
or in the more general theory of VI. This provides us with all 
the mathematical tools necessary to analyze the proposed 
equilibrium problems for CR systems (e.g., existence and 
uniqueness of the solution) and to devise distributed algo-
rithms along with their convergence properties. 

MOTIVATION
Recently, the increasing demand of wireless services has made the 
radio spectrum a very scarce and precious resource. Moreover, 
most current wireless networks characterized by fixed spectrum 
assignment policies are known to be very inefficient considering 

that licensed bandwidth demands are highly varying along the 
time and/or space dimensions. Indeed, according to the Federal 
Communications Commission (FCC), only 15–85% of the licensed 
spectrum is utilized on the average [1]. CR originated as a possible 
solution to this problem [2] obtained by endowing the radio nodes 
with “cognitive capabilities,” e.g., the ability to sense the electro-
magnetic environment, make short-term predictions, and react 
consequently by adapting transmission parameters (e.g., operating 
spectrum, modulation, and transmission power) to optimize the 

[From game theory to variational inequality theory]
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usage of the available resources [3]–[5]. The widely accepted 
debated position proposed for implementing the spectrum sharing 
idea of CR calls for a hierarchical access structure, distinguishing 
between primary users, or legacy spectrum holders, and second-
ary users, who access the licensed spectrum dynamically, under 
the constraint of not inducing intolerable quality of service (QoS) 
degradations on the primary users [3]–[5]. Within this context, 
alternative approaches have been considered to allow concurrent 
communications (see [5] for a recent tutorial on the topic). 

In this article, we focus on opportunistic resource allocation 
techniques in hierarchical cognitive networks (also known in the 
CR literature as interweave communications [5]), as they seem to 
be the most suitable for the current spectrum management poli-
cies and legacy wireless systems [4]. In particular, our interest is in 
devising the most appropriate form of concurrent communica-
tions of cognitive users competing over the physical resources that 
primary users make available. Looking at the opportunistic com-
munication paradigm from a broad signal processing perspective, 
the secondary users are allowed to transmit over a multidimen-
sional space, whose coordinates may represent time slots, fre-
quency bins, and (possibly) angles, with the goal of finding out the 
most appropriate transmission strategy exploring all available 
degrees of freedom, under the constraint of inducing a limited 
interference, or no interference at all, on the primary users. 

One approach to devise such a system design would be 
using global optimization techniques, under the framework of 
network utility maximization (NUM) (see, e.g., [6]). However, 
recent results in [7] have shown that the NUM problem based 
on the maximization of the information rates over frequency- 
selective single-input, single-output (SISO) interference chan-
nels is an NP-hard problem, under different choices of the 
system utility function. Consequently, several attempts have 
been pursued in the literature to deal with the nonconvexity of 
such a problem. Some works proposed suboptimal or closed-
to-optimal algorithms based on duality theory (see, e.g., 

[8]–[9]). Others works applied the theory of cooperative games 
(based on the Nash bargaining optimality criterion) to com-
pute, under technical conditions and/or simplifying assump-
tions on the users’ transmission strategies, the largest 
achievable rate region of the system. Two good tutorials on the 
topic are [10]–[11], published in this special issue. However, 
current algorithms based on global optimization or Nash bar-
gaining solution lack any mechanism to control the amount of 
aggregate interference generated by the transmitters. Moreover, 
they are centralized and computationally expensive. This raises 
some practical issues that are insurmountable in the CR con-
text. For example, these algorithms need a central node having 
full knowledge of all the channels and interference structure at 
every receiver, which poses serious implementation problems 
in terms of scalability and amount of signaling to be exchanged 
among the nodes. For these reasons, in this article, we follow a 
different approach and we concentrate on decentralized strate-
gies, where the cognitive users are able to self-enforce the 
negotiated agreements on the usage of the available spectrum 
without the intervention of a centralized authority. The philos-
ophy underlying this approach is a competitive optimality cri-
terion, as every user aims for the transmission strategy that 
unilaterally maximizes his own payoff function. This form of 
equilibrium is, in fact, the well-known concept of Nash equilib-
rium (NE) in game theory (see, e.g., [12], [13]). 

Because of the inherently competitive nature of multiuser sys-
tems, it is not surprising indeed that game theory has been already 
adopted to solve distributively many resource allocation problems 
in communications. An early application of game theory in a com-
munication system is [14], where the information rates of the 
users were maximized with respect to the power allocation in a 
DSL system modeled as a frequency-selective (in practice, multi-
carrier) Gaussian interference channel. Extension of the basic 
problem to ad-hoc frequency-selective and multiple-input, multi-
ple-output (MIMO) networks were given in [15]–[19] and [20]–
[23], respectively. However, the results in the cited papers have 
been recognized not to be applicable to CR systems because they 
do not provide any mechanism to control the amount of interfer-
ence generated by the secondary users on the primary users [3]. 
Figure 1 shows an example of the interference profile generated 
over a given portion of spectrum by the classical iterative waterfill-
ing algorithm (IWFA) [14], [24], and [25] at the receiver of a pri-
mary user that can only tolerate a maximum interference as 
indicated. The interference received by the primary user can be 
arbitrary large and the interference constraint (also called temper-
ature-interference constraint) is not satisfied. 

In this article, we fill this gap and provide an overview of 
 different equilibrium problems suitable to design cognitive (possi-
bly) MIMO transceivers within the paradigm of opportunistic com-
munications. We show how game theory and the more general 
theory of VI can be successfully applied to solve some design chal-
lenges in CR systems. Our main results are: i) the establishment of 
conditions guaranteeing that the dynamic interactions among 
cognitive nodes admit a (possibly unique) equilibrium solution, 
under different  interference-controlled paradigms preserving the 

[FIG1] Power spectral density of the interference profile at the 
receiver of a primary user generated by the classical iterative 
waterfilling algorithm.
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QoS of the primary users; and ii) practical and efficient algorithms 
able to reach the equilibrium points, with no coordination among 
the secondary users. The proposed algorithms differ in perfor-
mance, level of protection of the primary users, computational 
effort and signaling among primary and secondary users, conver-
gence analysis, and convergence speed; which makes them suit-
able for many different CR systems. 

NONCOOPERATIVE GAMES 
AND VI PROBLEMS: BASIC CONCEPTS
We first introduce some basic definitions and concepts from the 
theory of static noncooperative games and variational inequali-
ties that are used in the article. The literature is enormous; we 
refer the interested reader to [12]–[13] and [26] as entry points, 
and [27] for more advanced results. 

NONCOOPERATIVE GAMES
A noncooperative strategic form game, also called an NE problem 
(NEP), models a game where all players act independently 
and simultaneously according to their own self-interests and 
with no a priori knowledge of other players strategies. Stated in 
mathematical terms, a static Q2 player game in strategic form is 
a triplet G5 8V, Q,  u9  composed of a set of players 
V5 51, 2, c, Q6, a set of possible  combinations of actions of 
each player (called admissible strategy set) denoted by 
Q5 w

Q

i51
Qi, where Qi is the set of actions for the ith player, and 

a vector utility function u5 1ui 2 i51
Q , where ui 1x 2  : Q S R is the 

utility of the ith player that depends in general on the strategies 
x5 1xi, x2i 2  of all players; xi [ Qi denotes a feasible strategy pro-
file of player i, and x2i5 1xj 2 j2 i is a vector of strategies of all play-
ers except i. Similarly, we denote by Q2i5 w

j2 i 
Qj the joint 

strategy set of all players except i. The interpretation of ui is that 
player i receives a payoff of ui 1x1, c, xQ 2  once the players have 
chosen the strategies x1, c, xQ. Our interest in this article is 
focused on the Nash game in the form described above, where 
each player has a set of strategies that is independent from the 
actions of the other players. However, in reality sometimes 
the actions of the players are constrained by the actions of the 
other players. The so-called generalized NE problem (GNEP) 
introduced by Arrow and Debreu captures exactly this dependence 
(see, e.g., [28] for details). Recently, the GNEP has been success-
fully applied to model and solve certain power control games over 
frequency-selective interference channels. An overview of the 
state-of-the-art results based on the  framework developed in [19] 
can be found in [11], also published in this  special issue. 

The noncooperative paradigm postulates the rationality in the 
behaviors of the players: Each player i competes against the oth-
ers by choosing a strategy profile xi [ Qi that maximizes his pay-
off function ui 1xi, x2i 2 , given the actions x2i [ Q2i of the other 
players. A static noncooperative game in strategic form can be 
then represented as a set of coupled optimization problems 

 1G 2 :  maximize ui 1xi, x2i 2xi   4i [ V.
subject to xi [ Qi,

 
(1)

 

Player i’s problem in (1) is to determine, for each fixed but arbi-
trary tuple x2i of the other players’ strategies, an optimal strategy 
xi

* that solves the maximization problem in the variable xi [ Qi. 
A desirable solution to (1) is one in which individual (ratio-

nal) players act in accordance with their incentives, maximizing 
their own payoff function. This idea is best captured by the 
notion of NE: An action profile x* [ Q of game G is a pure-
strategy NE if the following condition holds for all i [ V:

 ui 1xi
*, x2i

* 2 $ ui 1xi, x2i
* 2 , 4xi [ Qi. (2) 

In words, an NE is a (self-enforcing) strategy profile, with the 
property that no single player can unilaterally benefit from a 
deviation from it, given that all the other players act accord-
ing to it. 

It is useful to restate the definition of NE in terms of a 
fixedpoint solution to the best response mapping B 1x 2  5 
B1 1x21 2 3 B2 1x22 2 3c3 BQ 1x2Q 2 ,  where each Bi 1x2i 2  is 
the set of the optimal solutions to the ith optimization problem 
in (1), given x2i [ Q2i. It is not difficult to see that a strategy 
profile x* [ Q is a pure strategy NE of G if and only if x* is a fixed 
point of B 1x 2 , i.e., x* [ B 1x* 2 . This alternative formulation of 
the equilibrium solution may be useful to address some essential 
issues of the equilibrium problems, such as the existence and 
uniqueness of solutions, stability of equilibria, and design of effec-
tive algorithms for finding equilibrium solutions, thus paving the 
way to the application of the fixed-point machinery. In fact, in 
general, the uniqueness or even existence of a pure strategy NE is 
not guaranteed; neither is convergence to an equilibrium when 
one exists. Sometimes, however, the structure of a game is such 
that one is able to establish one or more of these desirable prop-
erties, as for example happens in potential games [29] or super-
modular games [30], which have recently received great attention 
in the signal processing and communication communities as a 
useful tool to solve various power control problems in wireless 
communications and networking [31]–[33]. 

The study of the existence of pure strategy equilibria under 
weaker and weaker assumptions and the analysis of some struc-
tural properties of the solutions, such as uniqueness or local 
uniqueness, have been investigated extensively in the literature. 
An overview of the relevant literature is [28]. For the purpose of 
this article, it is enough to recall an existence result that is one 
of the simplest of the genre, based on the interpretation of the 
NE as fixed point of the best-response mapping and existence 
results from fixed-point theory (Kakutani fixed-point theorem). 
A pure strategy NE exists for a game G5 8V, Q, u9 if: i) each play-
er’s strategy set Qi is convex and compact (i.e., closed and 
bounded); and ii) the payoff function ui 1xi, x2i 2  of each player is 
continuous in x and quasi-concave in xi, for any fixed x2i (note 
that concavity of each ui 1xi, x2i 2  in xi for any fixed x2i implies 
quasiconcavity). For examples, the games described in this article 
satisfy these conditions. 

To overcome the problem of no equilibrium in pure strate-
gies, one can restate the NE concept to contain mixed strategies 
[34], i.e., the possibility of choosing a randomization over a set 
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of pure strategies. A mixed strategy NE of a strategic game is 
then defined as an NE of its mixed extension (see, e.g., [12] and 
[13] for details). An interesting result dealing with Nash equilib-
ria in mixed strategy is that every strategic game with a finite 
strategy set has a mixed strategy NE [34], which in general does 
not hold for pure strategies. 

Study of the uniqueness is much more involved and we refer 
the interested reader to the technical literature on the subject. 
However, it is important to recall here one of the simplest result 
dealing with uniqueness conditions, still based on the interpre-
tation of the NE as a fixed-point solution. Roughly speaking, we 
can say that a pure strategy NE of G, a fixed-point of the best- 
response function, is guaranteed to be unique if the best- 
response function (now assumed to be a one-to-one mapping) is 
a contraction in some vector norm [27], [35]. Contraction 
under a proper choice of norm, guarantees also convergence of 
(possibly) asynchronous algorithms based on the best-response 
 function [35], as, e.g., the algorithms that will be introduced in 
this article. 

Finally, it is important to remark that, even when the NE is 
unique, it needs not be Pareto efficient. A strategy profile x [ Q is 
Pareto efficient (optimal) if there exists no other strategy y [ Q 
that dominates x, i.e., ui 1y 2 $ ui 1x 2  for all i [ V, and 
uj 1y 2 . uj 1x 2  for at least one j [ V. This means that, given a 
strategic noncooperative game, there might exist proper coalitions 
among the players yielding an outcome of the game with the prop-
erty that there is always (at least) one player who cannot profit by 
deviating by that action profile. In other words, an NE may be vul-
nerable to deviations by coalitions of players, even if it is not vulner-
able to unilateral deviation by a single player. However, Pareto 
optimality in general comes at the price of a centralized optimiza-
tion, which requires the full knowledge of the strategy sets and the 
payoff functions of all players. Such a centralized approach is not 
applicable in many practical applications in signal processing and 
communications, e.g., in emerging wireless networks, such as sen-
sor networks, ad-hoc networks, CR systems, and pervasive comput-
ing systems. The NE solutions, instead, are more suitable to be 
computed using a decentralized approach that does require no 
exchange of  information among the players. Different  refinements 
of the NE  concept have also been proposed in the literature to over-
come some shortcomings of the NE solution (see, e.g., [36]–[37]). 

VARIATIONAL INEQUALITIES PROBLEMS
The VI problem is as follows. Given a subset K of the Euclidean 
n-dimensional space Rn and a mapping F : K  A  Rn, the VI 
problem, denoted VI 1K, F 2 , is to find a vector x* [ K (called a 
solution of the VI) such that 

 1x2 x* 2T F 1x* 2 $ 0,  4x [ K. (3) 

Several interesting problems can be formulated as VI problems 
and some examples follow (see [27] for more source problems). 

Solution of systems of equations. ■  The simplest example of 
VI is the problem of solving a system of equations. In fact, it 
is easy to see that if K5Rn, then VI 1Rn, F 2  is equivalent to 

finding a x* [ Rn such that F 1x* 2 5 0. As special case, if the 
mapping F is affine, i.e., F 1x 2 5 Ax2 b, the previous problem 
is equivalent to the classical system of equation Ax*5 b.

Fixed-point problems. ■  Given a mapping T : K  A  K, the 
fixed-point problem is to find a vector x* [ K such that 
T 1x* 2 5 x*. This problem can be converted into a VI format, 
simply by defining F 1x 2 5 x2 T 1x 2 . 

Constrained and unconstrained optimization. ■  If K is con-
vex and the mapping F in VI 1K, F 2  is the gradient of a real-
valued function f : K  A  R, then VI 1K, F 2  represents a 
necessary conditions of optimality for the following optimiza-
tion problem: find a point x* [ K such that f 1x* 2 # f 1x 2 , for 
all x [ K. Also, if the function f  is convex, the reverse asser-
tion is true, meaning that a point x* [ K minimizes f  over K 
if and only if is a solution to VI 1K, =f 2 , where =f  denotes the 
gradient of f  (the VI coincides with the first-order necessary 
and sufficient optimality conditions of a convex differentiable 
function). In particular, if we let K5Rn, we see that uncon-
strained convex optimization is also a VI problem. 

Game theory problems. ■  Consider a strategic noncoopera-
tive game G5 8V, Q, u9 as defined in (1), and suppose that 
each Qi ( Rni is convex and closed, and ui 1xi, x2i 2  is convex 
and continuously differentiable in xi, then a strategy profile x* 
is an NE if and only if it solves the VI 1K, F 2 , with K5Q1  
3c3 QQ and F 1x 252 3=T

x1
u1 1x 2 ,c, =T

xQ
uQ 1x 2 4T,  where 

=xi
ui 1x 2  denotes the gradient of ui 1x 2  with respect to xi. 

The theory and solution methods for various kinds of VIs are 
developed rather well and allow one to choose a suitable way to 
investigate each particular problem under consideration. For the 
purpose of this article, it is enough to recall some of the basic con-
ditions for the existence of the solution to a VI, as they were used 
to obtain the results provided in the article for the proposed CR 
problems. A classical existence result reads as follows [26], [27]. 
The VI 1K, F 2  is solvable if K is a nonempty, convex, and compact 
subset of a finite-dimensional Euclidean space; and F is a continu-
ous mapping. The study of the uniqueness of the solution is much 
more involved and goes beyond the scope of this article. We refer 
the interested readers to [27, Ch. 2–3] for a detailed analysis of the 
topic. Many solution methods along with their convergence prop-
erties have been also proposed for VI in the literature; a detailed 
description can be found in [26] and [27].

CR SYSTEM MODEL 
We consider a scenario composed of heterogeneous MIMO wire-
less systems (primary and secondary users) sharing the same 
physical resources, e.g., time, frequency, and space, as depicted in 
Figure 2. The setup may include MIMO peer-to-peer links, multi-
ple access, or broadcast (single or multiantenna, flat, or frequency-
selective) channels. The systems coexisting in the network do not 
cooperate with each other, and no centralized authority is assumed 
to handle the network access for the secondary users. Hence, it is 
natural to model the set of cognitive secondary users as vector 
interference channel, where the transmission over the generic qth 
MIMO channel with nTq

 transmit and nRq
 receive dimensions is 

given by the following baseband complex-valued signal model: 
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 yq5Hqqxq1 a
r2q

Hrqxr1 nq,  (4) 

where the nTq
-dimensional vector xq is the signal transmitted by 

source q, yq is the nRq
-dimensional vector received by destination 

q, Hqq is the nRq
3 nTq

 channel matrix between the qth transmitter 
and the intended receiver, Hrq is the nRq

3nTr
 cross-channel matrix 

between source r and destination q, and nq is a zero-mean circu-
larly symmetric complex Gaussian noise vector with arbitrary 
(nonsingular) covariance matrix Rnq

, collecting the effect of both 
thermal noise and interference generated by the primary users. 
The first term on the right-hand side of (4) is the useful signal for 
link q, the second and third terms represent the multiuser inter-
ference (MUI) received by secondary user q and generated by the 
other secondary users and the  primary users, respectively. The 
power constraint for each  transmitter is 

 E5 7xq 7 226 5 Tr 1Qq 2 # Pq,  (5) 

where E5 # 6 denotes the expectation value and Qqf 0 is the cova-
riance matrix of the symbols transmitted by user q (the inequality 
“f0” stands for positive semidefinite), and Pq is the transmit 
power in units of energy per transmission. 

The model in (4) represents a fairly general MIMO setup, 
describing multiuser transmissions over multiple channels, which 
may represent frequency channels (as in OFDM systems) [16]–
[19], time slots [as in time division multiple access (TDMA) sys-
tems] [16]–[17], [19], or spatial channels (as in transmit/receive 
beamforming systems) [21].

Due to the distributed nature of the CR system, where there is 
neither a centralized control nor coordination among the second-
ary users, we focus on transmission techniques where no interfer-
ence cancellation is performed and the MUI is treated as 
additive-colored noise at each receiver. Each channel is assumed 
to change sufficiently slow enough to be considered fixed during 
the whole transmission, so that the information theoretical results 
are meaningful. Moreover, perfect channel state information at 
both transmitter and receiver sides of each link is assumed. This 
includes the direct channel Hqq (but not the cross-channels 5Hrq6r2q from the other secondary users) as well as the covariance 
matrix of the noise plus MUI 

 R2q 1Q2q 2 ! Rnq
1 a

r2q
HrqQrHrq

H . (6) 

Within the assumptions made above, the maximum information 
rate on link q for a given set of user covariance matrices 
Q1, c, QQ, is [38] 

 Rq 1Qq, Q2q 2 5 log det 1 I1Hqq
H R2q

21 1Q2q 2HqqQq 2 , (7) 

where Q2q ! 1Qr 2 r2q is the set of all the users covariance matri-
ces, except the qth one. 

INTERFERENCE CONSTRAINTS: INDIVIDUAL AND 
CONSERVATIVE VERSUS GLOBAL AND FLEXIBLE
Different from traditional static or centralized spectrum assign-
ment, opportunistic communications in CR systems enable sec-
ondary users to transmit with overlapping spectrum and/or 

coverage with primary users, provided that the degradation 
induced on the primary users’ performance is null or tolerable [3], 
[4]. While the definition of degradation may be formulated mathe-
matically in a number of ways, one common definition involves 
the imposition of some form of interference constraints on the 
secondary users, whose choice and implementation are a complex 
and open regulatory issue. Both deterministic and probabilistic 
interference constraints have been suggested in the literature [3], 
[4], namely: the maximum MUI interference power level perceived 
by any active primary user (the so-called temperature-interference 
limit) [1], [3] and the maximum probability that the MUI interfer-
ence level at each primary user’s receiver may exceed a prescribed 
threshold [4]. In this article, we will consider in detail determinis-
tic interference constraints; in particular, we envisage the use of 
two classes of interference constraints, termed individual conser-
vative constraints and global flexible constraints. 

INDIVIDUAL CONSERVATIVE CONSTRAINTS
These constraints are defined individually for each secondary user 
(with the disadvantage that sometimes may result too conserva-
tive) to control the overall interference caused on the primary 
receivers. Specifically, we have the following:

Null-shaping constraints: ■  

 Uq
HQq5 0,  (8) 

 where Uq is a tall matrix whose columns represent the spatial 
and/or the frequency “directions” along which user q is not 
allowed to transmit [ 1 # 2H denotes the Hermitian of the matrix 
argument]. 

Soft- and peak-power-shaping constraints: ■  

 Tr 1Gq
HQqGq 2 # PSU, q

ave and lmax 1Gq
HQqGq 2 # PSU, q

peak, (9)

 which represent a relaxed version of the null constraints with a 
constraint on the total average and peak average power radiat-
ed along the range space of matrix Gq, where lmax 1 # 2  denotes 
the maximum eigenvalue, and PSU, q

ave  and PSU, q
peak are the 

[FIG2] A conceptual illustration of a hierarchical CR system with 
primary users (uplink cellular system in blue) and secondary 
users (red pairs).
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 maximum average and average peak power respectively that 
can be transmitted along the spatial and/or the frequency 
directions spanned by Gq.
The null constraints are motivated in practice by the 

 interference-avoiding paradigm in CR communications (also 
called white-space filling approach) [5], [39]: CR nodes sense the 
spatial, temporal, or spectral voids and adjust their transmission 
strategy to fill in the sensed white spaces, as illustrated in Figure 3. 
This white-space filling strategy is often considered to be the key 
motivation for the introduction and development of CR idea and 
has already been adopted as a core platform in emerging wireless 
access standards such as IEEE 802.22 Wireless Regional Area 
Networks (WRANs) [40]–[41]. One interesting note is that the 
FCC is in the second phase of testing white-space devices from a 
number of companies and research labs, meaning that the white-
space filling paradigm is approaching. Observe that the structure 
of the null constraints in (8) is a very general form and includes, 
as particular cases, the imposition of nulls over: 1) frequency 
bands occupied by the primary users (the range space of Uq coin-
cides with the subspace spanned by a set of IDFT vectors), 2) the 
time slots used by the primary users (the set of canonical vectors), 
and 3) angular directions identifying the primary receivers as 
observed from the secondary transmitters (the set of steering vec-
tors representing the directions of the primary receivers as 
observed from the secondary transmitters). It is worth emphasiz-
ing that the use of the spatial domain can greatly improve the 
capabilities of cognitive users, as it allows them to transmit over 
the same frequency band and time slot without interfering. 

The imposition of the null constraints at the secondary users’ 
side requires an opportunity identification phase, through a 
proper sensing mechanism: Secondary users need to reliably 
detect weak primary signals of possibly different types over a tar-
geted region and wide frequency band to identify white-space 
halls. In particular, the use of spatial null constraints requires the 
identification of the primary receivers, a task that is much more 
demanding than the detection of primary transmitters, if the pri-
mary receivers are passive devices, as in TV network or downlink 

cellular systems. Examples of solutions to this problem have 
recently been proposed in [4] and [42]–[43]. A recent overview of 
the challenges and possible solutions for the design of collabora-
tive wideband sensing in CR networks can be found in [44[–[45]. 
The study of sensing in CR networks goes beyond the scope of this 
article. Hereafter, we thus assume perfect sensing from the sec-
ondary users. 

While the white-space filling paradigm demands that cogni-
tive transmissions be orthogonal (in space, time, or frequency) 
to primary transmissions, opportunistic communications involve 
simultaneous transmissions between primary and  secondary 
users, provided that the required QoS of the primary users is 
preserved (also called interference-temperature controlled trans-
missions [3], [39], [43]). This can be done using the individual 
soft shaping constraints expressed in (9) that represent a con-
straint on the total average and peak average power allowed to be 
radiated (projected) along the directions spanned by the column 
space of matrix Gq. For example, in a MIMO setup, the matrix Gq 
in (9) may contain, in its columns, the steering vectors identify-
ing the directions of the primary receivers. By using these con-
straints, we assume that the power thresholds PSU, q

ave  and PSU, q
peak at 

each secondary transmitter have been fixed in advance (imposed, 
e.g., by the network service provider, or legacy systems, or the 
spectrum body agency) so that the temperature-interference 
constraints at the primary receivers are met. For example, a pos-
sible (but conservative) choice for PSU, q

ave s and PSU, q
peaks is 

PSU, q
ave 5 PPU

ave/Q and PSU, q
peak5 PPU

peak/Q for all q, where PPU
ave and PPU

peak 
are the overall maximum average and peak average interference 
tolerable by the primary user, and Q is the number of active sec-
ondary users. The assumption made above is motivated by all the 
practical CR scenarios where primary terminals are oblivious to 
the presence of secondary users, thus behaving as if no second-
ary activity was present (also called commons model).

Even though individual interference constraints (possibly in 
addition with the null constraints) will lead to totally distributed 
algorithms with no coordination between the primary and the sec-
ondary users, as we will show in the forthcoming sections, they 
sometimes may be too restrictive and thus marginalize the poten-
tial gains offered by the dynamic resource assignment mechanism. 
Since the temperature-interference limit [3] is given by the aggre-
gate interference induced by all of the active secondary users to 
the primary users’ receivers, it seems natural to limit instead such 
a aggregate interference, rather than the individual soft power and 
peak power constraints. This motivates the following global inter-
ference constraints. 

GLOBAL FLEXIBLE CONSTRAINTS
These constraints, as opposed to the individual ones, are defined 
globally over all the secondary users 

 a
Q

q51
Tr 1Gq, p

H QqGq, p 2# PPU, p
ave  and a

Q

q51
lmax 1Gq, p

H QqGq, p2#PPU, p
peak,   

 (10)

where PPU, p
ave  and PPU, p

peak are the maximum average and peak average 
interference tolerable by the pth primary user. As we will show in 

[FIG3] A conceptual illustration of resource utilization over time, 
frequency and space: the white-spaces are available for the 
transmissions of the secondary users.
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the forthcoming sections, these constraints in general lead to  better 
performance of secondary users that imposing the conservative 
individual constraints. However, this gain comes at a price: The 
resulting algorithms require some signaling (albeit, very reduced) 
from the primary to the secondary users. They can be employed in 
all CR networks where an interaction between the primary and the 
secondary users is allowed, as, e.g., in the so-called property-right 
CR model (or spectrum leasing), where primary users own the 
spectral resource and possibly decide to lease part of it to secondary 
users in exchange for appropriate remuneration. 

Within the CR context above, we formulate next the opti-
mization problem for the transmission strategies of the sec-
ondary users under different combinations of power and 
individual/global interference constraints, and propose many 
iterative algorithms that converge to the solution along with 
their convergence properties. 

NONCOOPERATIVE GAMES WITH 
CONSERVATIVE INDIVIDUAL CONSTRAINTS 
We formulate the resource allocation problem among secondary 
users as a strategic noncooperative game, where the players are 
the secondary users and the payoff functions are the information 
rates on each link: Each secondary user q competes against the 
others by choosing the transmit covariance matrix Qq (i.e., his 
strategy) that maximizes his own information rate Rq 1Qq, Q2q 2  in 
(7), under different combination of power and individual interfer-
ence constraints (the more complex global constraints are consid-
ered in the next section via the more general framework of VI). An 
NE of the game is reached when each user, given the strategy pro-
files of the others, does not get any rate increase by unilaterally 
changing his own strategy. For the sake of simplicity, we start by 
considering only power constraints (5) and individual null con-
straints (8), since they are suitable to model the white-space filling 
paradigm. Then, we consider more general opportunistic commu-
nications by allowing also soft-shaping interference  constraints (9). 

GAME WITH NULL CONSTRAINTS 
Given the rate functions in (7), the rate maximization game 
among the secondary users in the presence of the power con-
straints (5) and null constraints (8) is formally defined as [46] 

 
1Gnull 2 :

 

maximize
Qqf0  

Rq 1Qq,Q2q 2
subject to Tr 1Qq 2 # Pq, Uq

HQq5 0 (11)

for all q [ V,  where V ! 51, 2, c, Q6 is the set of the players 
(the Q secondary users) and Rq 1Qq, Q2q 2  is the payoff function of 
player q, defined in (7). Without the null constraints, the solution 
of each optimization problem in (11) would lead to the well-known 
MIMO waterfilling solution [38]. The presence of the null con-
straints modifies the problem and the solution for each user is not 
necessarily a waterfilling anymore. Nevertheless, we show now 
that introducing a proper projection matrix the solutions of (11) 
can still be efficiently computed via a  waterfilling-like expression. 
To this end, we rewrite game Gnull in a more convenient form as 
detailed next. 

Observe that the null constraint Uq
HQq5 0 in (11) is equivalent 

to [46] 
 Qq5 Pq

'QqPq
', (12)

where Pq
'5 I2UqUq

H denotes the orthogonal projection onto the 
orthogonal complement of the column space of Uq. At this point, 
the problem can be further simplified by noting that the null con-
straint Qq5 Pq

'QqPq
' in (11) is redundant, provided that the origi-

nal channels Hrq are replaced by the modified channels HrqPr
'. 

Then, the final formulation becomes

 
maximize

Qqf0
log det 1 I1 Pq

'Hqq
H R|2q

21 1Q2q 2HqqPq
'Qq 2

subject to Tr 1Qq 2 # Pq
 (13)

for all q [ V, where 

 R|2q 1Q2q 2 ! Rnq
1 a

r2q
HrqPr

'QrPr
'Hrq

H . (14) 

This is due to the fact that, for any user q, any optimal solution Qq
* 

in (13), the MIMO waterfilling solution, will be orthogonal to the 
null space of HqqPq

', whatever R|2q 1Q2q
* 2  is (recall that R|2q 1Q2q 2  

is positive definite for all feasible Q2q), implying that the range 
space of each Qq

* is contained in or equal to that of Uq
'. Note that 

(13) can be further simplified by using R2q 1Q2q 2  rather than 
R|2q 1Q2q 2  [46].

Building on the equivalence of (11) and (13), we can focus on 
the game in (13) and apply the framework proposed in [23] to fully 
characterize the game Gnull, by deriving the structure of the Nash 
equilibria and the conditions guaranteeing both the existence/
uniqueness of the equilibrium and the global convergence of the 
proposed distributed algorithms. 

NASH EQUILIBRIA EXISTENCE AND UNIQUENESS
To write the Nash equilibria of game Gnull in a convenient form, we 
introduce first the MIMO waterfilling operator defined, for any 
q [ V, as 

 WFq 1X 2 ! UX 1mq, XI2DX
21 21UX

H,  (15)

where UX is the (semi) unitary matrix of the eigenvectors associ-
ated to the positive eigenvalues of X, DX is the diagonal matrix 
with the positive eigenvalues, mq, X . 0 is the water level chosen 
to satisfy the power constraint Tr5 1mq, XI2DX

21 216 5 Pq, with 1x 21 ! max 10, x 2  applied component-wise, and I is the identity 
matrix. The solution to the single user optimization problem in 
(11), the best response of player q is [46] 

 Qq
*5 Tq 1Q2q 2 ! Uq

'WFq 1Uq
'HHqq

H R2q
21 1Q2q 2HqqUq

' 2Uq
'H, (16) 

where Uq
' is the semiunitary matrix orthogonal to Uq (note that 

Pq
'5Uq

'Uq
'H), and WFq 1 # 2  and R2q 1Q2q 2  are defined in (15) and 

(6), respectively. Using (16), we can now characterize the Nash 
equilibria of the game Gnull in a compact way as the solutions to 
the following waterfilling fixed-point equation: 

 Qq
*5 Tq 1Q2q

* 2 ,  4q [ V, (17) 
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which always admits a solution, for any set of channel matri-
ces, power constraints of the users, and null-shaping con-
straints (the game Gnull indeed satisfies basic existence results, 
as given in the previous section). 

The structure of the best response as given in (16) (and thus 
the Nash equilibria) shows that the null constraints in the trans-
missions of secondary users can be handled without affecting 
the computational complexity: The optimal transmission strat-
egy for each user q can be efficiently computed via a MIMO 
waterfilling solution, provided that the original channel matrix 
Hqq is replaced by HqqUq

'. This result has an intuitive interpreta-
tion: To guarantee that each user q does not transmit over a 
given subspace (spanned by the columns of Uq), whatever the 
strategies of the other users are, while maximizing his informa-
tion rate, it is enough to induce in the original channel matrix 
Hqq a null space that (at least) coincides with the subspace where 
the transmission is not allowed. This is precisely what is done in 
the payoff functions in (13) by replacing Hqq with HqqPq

'. 
The waterfilling-like structure of the Nash equilibria in (17) 

is also instrumental to study the uniqueness of the equilib-
rium as well as the convergence of distributed algorithms. In 
fact, invoking the interpretation of the MIMO waterfilling 
solution as a matrix projection over a proper convex set as 
described in [21] and [23], one can obtain sufficient conditions 
guaranteeing the uniqueness of the NE of Gnull by studying the 
contraction properties of the waterfilling projection. For 
example, the NE of Gnull is unique if one of the two following 
set of conditions is satisfied (more general but less intuitive 
conditions are given in [46]): 

Low-received MUI:

 a
r2q

innrq
# r 1Hrq

H Hrq 2r 1Hqq
[HHqq

[ 2 , 1, 4q [ V,  (C1)

Low-generated MUI:

 a
q2r

innrq
# r 1Hrq

H Hrq 2r 1Hqq
[HHqq

[ 2 , 1, 4r [ V,     (C2) 

where 1 # 2[ denotes the Moore-Penrose pseudoinverse [47], and 
innrq is the interference-plus-noise to noise ratio, defined as 

 innrq !

raRnq
1 a

r2q
PrHrqHrq

H b
lmin 1Rnq

2 ,  (18) 

with r 1A 2  denoting the spectral radius of A (i.e., the maximum of 
the modulus of the eigenvalues). 

Conditions (C1) and (C2) have an interesting interpretation: 
The uniqueness of the NE is ensured if the interference among 
secondary users is sufficiently small. Condition (C1) can be indeed 
interpreted as a constraint on the maximum amount of interfer-
ence that each receiver can tolerate, whereas (C2) introduces an 
upper bound on the maximum level of interference that each 
transmitter of the secondary users is allowed to generate. 

DISTRIBUTED ALGORITHMS
We focus now on distributed algorithms that converge to the NE 
of game Gnull. We consider totally asynchronous distributed algo-
rithms, meaning that in the updating procedure some users are 
allowed to change their strategy more frequently than the others, 
and they might even perform these updates using outdated infor-
mation on the  interference caused by the others. To provide a for-
mal description of the proposed asynchronous MIMO IWFA, we 
briefly recall some intermediate definitions, as given in [21]. 

We assume, without loss of generality (w.l.o.g.), that the set of 
times at which one or more users update their strategies is the dis-
crete set T5N1 5 50, 1, 2, c6. Let Qq

1n2 denote the  covariance 
matrix of the vector signal transmitted by user q at the nth itera-
tion, and let Tq # T denote the set of times n at which Qq

1n2 is 
updated (thus, at time n o Tq,  Qq

1n2 is left unchanged). Let tr
q 1n 2  

denote the most recent time at which the interference from user r 
is perceived by user q at the nth  iteration (observe that tr

q 1n 2  satis-
fies 0 # tr

q 1n 2 # n). Hence, if user q updates his own covariance 
matrix at the nth iteration, then he chooses his optimal Qq

1n2, 
according to his best-response Tq 1Q2q 2  defined in (16) and using 
the interference level caused by 

 Q2q
1tq1n22 ! 1Q1

1t1
q 1n22, c, Qq21

1tq21
q 1n22, Qq11

1tq11
q 1n22, c, QQ

1tQ
q 1n22 2 . (19)

Some standard conditions in asynchronous convergence theory 
that are fulfilled in any practical implementation need to be 
 satisfied by the schedule 5tr

q 1n 2 6 and 5Tq6; we refer to [18] and 
[21] for the details. 

Using the above notation, the asynchronous MIMO IWFA is 
formally described in Algorithm 1, where the best response Tq 1 #2  of 
each user is defined in (16). Interestingly, as n S 1`,  the algo-
rithm converges to the solution of game under the same condi-
tions guaranteeing the uniqueness of the NE [e.g., (C1) or (C2)], 
for any set of feasible initial conditions, and updating schedule 
[23], [46]. 

ALGORITHM 1: MIMO ASYNCHRONOUS IWFA 
Data : any feasible Qq

102 for all q5 1, c, Q. 
1: Set n5 0; 
2: repeat 

3: Qq
1n1125 eTq 1Q2q

1tq1n22 2 , if n [ Tq, 
Qq
1n2,  otherwise;

 4q [ V (20) 

4: until the prescribed convergence criterion 
is satisfied.

Algorithm 1 contains as special cases a plethora of algo-
rithms, each one obtained by a possible choice of the scheduling 
of the users in the updating procedure (i.e., the parameters 5tr

q 1n 2 6 and 5Tq6). Two well-known special cases are the sequen-
tial and the simultaneous MIMO IWFA, where the users update 
their own strategies sequentially and simultaneously, respectively. 
Interestingly, since conditions (C1)–(C2) do not depend on the 
particular choice of 5Tq6 and 5tr

q 1n 2 6, the important result com-
ing from the convergence analysis is that all the algorithms result-
ing as special cases of the asynchronous MIMO IWFA are 
guaranteed to reach the unique NE of the game, under the same 
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set of convergence conditions. Moreover they have the following 
desired properties: 

Low complexity and distributed nature: ■  Even in the pres-
ence of null constraints, the best response Tq 1 # 2  of each user q 
can be efficiently and locally computed using a MIMO waterfill-
ing-based solution, provided that each channel Hqq is replaced 
by the channel HqqUq

'. Thus, Algorithm 1 can be implemented 
in a distributed way, since each user only needs to measure the 
overall interference-plus-noise covariance matrix R2q 1Q2q 2  
and waterfill over Uq

'HHqq
H R2q

21 1Q2q 2HqqUq
'. 

Robustness: ■  Algorithm 1 is robust against missing or out-
dated updates of secondary users. This feature strongly relaxes 
the constraints on the synchronization of the secondary users’ 
updates with respect to those imposed, for example, by the 
simultaneous or sequential updating schemes. 

Fast convergence behavior: ■  The simultaneous version of 
the proposed algorithm converges in a very few iterations, even 
in networks with many active secondary users. As expected, the 
sequential IWFA is slower than the simultaneous IWFA, espe-
cially if the number of active secondary users is large, since 
each user is forced to wait for all the users scheduled in 
advance, before updating his own covariance matrix. This intu-
ition is formalized in [17] and [18], where the authors provided 
the expression of the asymptotic convergent factor of both the 
sequential and simultaneous IWFAs. 

Control of the radiated interference: ■  Thanks to the game 
theoretical formulation including null constraints, the pro-
posed asynchronous IWFA does not suffer of the main draw-
back of the classical IWFA-based algorithms 14], [21] (i.e., the 
violation of the temperature-interference limit [3]). 

GAME WITH NULL CONSTRAINTS 
VIA VIRTUAL NOISE SHAPING
We have seen how to deal efficiently with null constraints in the 
rate maximization game. Under conditions (C1)–(C2), the NE is 
unique and Algorithm 1 asymptotically converges to this solution. 
However these conditions depend, among all, on the interference 
generated by the primary users (through the innrqs), and thus 
they may not be satisfied for some interference profile, which is an 
undesired result. In such a case, the NE might not be unique and 
there is no guarantee that the proposed algorithms converge to an 
equilibrium. To overcome this issue, we propose here an alterna-
tive approach to impose null constraints (8) on the transmissions 
of secondary users based on the introduction of virtual interferers. 
This leads to a new game with more relaxed uniqueness and con-
vergence conditions. The solutions of this new game are in general 
different to the Nash equilibria of Gnull, but the two games are 
numerically shown to have almost the same performance in terms 
of sum-rate. 

The idea behind this alternative approach can be easily 
 understood if one considers the transmission over SISO 
 frequency-selective channels, where all the channel matrices have 
the same eigenvectors (the DFT vectors): to avoid the use of a 
given subchannel, it is sufficient to introduce a “virtual” noise with 
sufficiently high power over that subchannel. The same idea 

 cannot be directly applied to the MIMO case, as arbitrary MIMO 
channel matrices have different right/left singular vectors from 
each other. Nevertheless, we show how to bypass this difficulty to 
design the covariance matrix of the virtual noise (to be added to 
the noise covariance matrix of each secondary receiver), so that all 
the Nash equilibria of the game satisfy the null constraints along 
the specified directions. For the sake of simplicity, we assume here 
nonsingular square channel  matrices Hqq, for all q [ V. Let us 
consider the following strategic noncooperative game [46]: 

1Ga 2 :  maximize
Qqf0

log det 1 I1Hqq
H R2q,a

21 1Q2q 2HqqQq 2
subject to Tr 1Qq 2 # Pq   

4q [ V

 
(21) 

where 

 R2q, a 1Q2q 2 !R2q 1Q2q 21aÛqÛq
H

 5Rnq
1a

r2q
HrqQrHrq

H 1aÛqÛq
H (22)

denotes the MUI-plus-noise covariance matrix observed by sec-
ondary user q, plus the covariance matrix aÛqÛq

H of the virtual 
interference along the range space of the Ûq, where Ûq is a 
(strictly) tall matrix, and a is a positive constant. Our interest is 
on deriving the asymptotic properties of the solutions of Ga, as 
a S 1`, and the structure of Ûq’s making the null constraints 
in (8) satisfied. 

NASH EQUILIBRIA: EXISTENCE AND UNIQUENESS 
Game Ga always admits an NE, for any set of channel matrices, 
transmit power of the users, virtual interference matrices Ûq’s, 
and a . 0 (the game indeed satisfies basic existence results as 
given so far). Moreover, it can be proved that the solution to (21) 
is unique irrespective of the value of the Ûqs and a . 0 if, e.g., 
one of the following two conditions are satisfied (more general 
conditions are given in [46]): 

Low-received MUI:  a
r2q
r 1Hrq

H Hqq
[HHqq

[Hrq 2 , 1, 4q [ V,  (C3) 

Low-generated MUI: a
q2r
r 1Hrq

H Hqq
[HHqq

[Hrq 2 , 1, 4r [ V.    (C4) 

Observe that, since conditions (C3)–(C4) do not depend on the 
transmission strategies of the primary users, game Ga has the 
desired property that the uniqueness of the NE is robust against 
the interference generated by the primary users. Moreover, under 
(C3)–(C4), it can be shown that, asymptotically for a S 1`, the 
unique solution to (21) indeed satisfies the null constraints (8), 
provided that virtual interferer’s matrices are chosen so that 
Ûq5HqqUq [46]; which provides an alternative way to impose the 
null constraints in (8) with respect to Gnull. We refer in the follow-
ing to the game Ga when a S 1` and each Ûq5HqqUq as G`, 
and denote by Q`

*  an NE of G`. It is worth emphasizing that, even 
though each Q`

*  satisfies the null constraints (8), game G` is a 
rather artificial formulation that does not correspond any physical 
scenario (in the game G`, the best-response strategy of each player 
is a waterfilling but over the fictitious channel Ûq

'HHqq rather than 
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on the physical channel Hqq [46]). Nevertheless, we will show that 
the performance of G` and Gnull are (almost) the same in terms of 
sum-rate achievable at the NE. 

DISTRIBUTED ALGORITHMS
To reach the Nash equilibria of game Ga while satisfying the null 
constraints (for sufficiently large a), one can use the asynchro-
nous IWFA as given in Algorithm 1, where the best-response 
Tq 1Q2q 2  in (20) is replaced by the following: 

 Tq, a 1Q2q 2 ! WFq 1Hqq
H R2q, a

21 1Q2q, 2Hqq 2 ,  (23) 

where the MIMO waterfilling operator WFq is defined in (15), and 
the null constraints Ûq in R2q, a are Ûq5HqqUq. Observe that 
such an algorithm has the same nice properties of the algorithm 
proposed to reach the Nash equilibria of the game Gnull. In particu-
lar, the best-response of each player q can be still efficiently and 
locally computed via a MIMO waterfilling-like solution, provided 
that the virtual interference covariance matrix aUqUq

H is added to 
the MUI covariance matrix R2q 1Q2q 2  measured at the qth 
receiver. The global convergence of the algorithm as n S ` is 
guaranteed under conditions (C3) or (C4) [46]. 

COMPARISON OF 
UNIQUENESS/CONVERGENCE CONDITIONS 
Since the uniqueness/convergence conditions given so far 
depend on the channel matrices 5Hrq6r, q[V, there is a nonzero 
probability that they will not be satisfied for a given channel 
realization drawn from a given probability space. To quantify the 

adequacy of our conditions, we tested them over a set of random 
channel matrices whose elements are generated as circularly 
symmetric complex Gaussian random variables with variance 
equal to the inverse of the square distance between the associ-
ated transmitter-receiver links (flat-fading channel model). We 
consider a hierarchical CR network as depicted in Figure 4(a), 
composed of three secondary user MIMO links and one primary 
user [the base station (BS)], sharing the same band. To preserve 
the QoS of the primary users, null constraints are imposed on 
the secondary users in the direction of the receiver of the pri-
mary user. In Figure 4(b), we plot the probability that condi-
tions (C1) or (C2) and (C3) or (C4) are satisfied versus the 
intra-pair distance d [ 10;1 2  (normalized by the cell’s side) [see 
Figure 4(a)] between each secondary transmitter and the corre-
sponding receiver (assumed for the simplicity of representation 
to be equal for all the secondary links), for different values of the 
transmit/receive antennas. Since conditions (C1)–(C2) depend 
on the interference generated by the primary user and the 
power budgets of the secondary users, we considered two differ-
ent values of the SNR at the receivers of the secondary users, 
namely snrq ! Pq/sq,tot

2 5 0 dB and snrq5 8 dB, for all q [ V, 
where sq,tot

2  is the variance of thermal noise plus the interfer-
ence generated by the primary user over all the substreams. 

As expected, the probability of the uniqueness of the NE of 
both games Gnull and Ga and convergence of the IWFAs 
increases as each secondary transmitter approaches his 
receiver, corresponding to a decrease of the overall MUI. 
Moreover, conditions (C1)–(C2) are confirmed to be stronger 
than (C3)–(C4) whatever the number of transmit/receive 

[FIG4] (a) CR MIMO system. (b) Probability of the uniqueness of the NE of games Gnull and Ga and convergence of the asynchronous 
IWFA as a function of the normalized intra-pair distance d [ 10, 1 2 , for the CR MIMO system given in (a). 
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antennas, the intra-pair distance d, and the SNR value are, 
implying that game Ga admits milder uniqueness/convergence 
conditions than those of the original game Gnull. 

PERFORMANCE OF Gnull AND G` 
As an example, in Figure 5, we compare games Gnull and G` in 
terms of sum-rate. Specifically, in Figure 5(a), we plot the 
average sum-rate at the (unique) NE of the games Gnull and G` 
for the CR network depicted in Figure 4(a) as a function of the 
intra-pair distance d [ 10, 1 2  among the links, for different 
numbers of transmit/receive antennas. In Figure 5(b), we plot 
the outage sum-rate values, for the same systems as in Figure 
5(a) and d5 0.5. For each secondary user, a null constraint in 
the direction of the receiver of the primary user is imposed. 
From the figures one infers that games Gnull and G` have 
almost the same performance in terms of sum-rate at the NE; 
even if in the game G`, given the strategies of the others, each 
player does not maximize his own rate, as happens in the game 
Gnull. This is due to the fact that the Nash equilibria of game 
Gnull are in general not Pareto efficient. The above results indi-
cate then that game Ga, with sufficiently large a, may be a 
valid alternative to game Gnull to impose the null constraints 
with more relaxed conditions for convergence. 

GAME WITH SOFT AND NULL CONSTRAINTS 
We focus now on the rate maximization in the presence of both 
individual null and soft shaping constraints. The resulting game 
can be formulated as follows: 

 1Gsoft 2 :  

maximize
Qqf0

Rq 1Qq, Q2q 2
subject to Tr 1Gq

HQqGq 2 # PSU,q
ave

lmax 1Gq
HQqGq 2 # PSU,q

peak

Uq
HQq5 0

 

(24)

for all q [ V, where the transmit power constraint (5) has been 
absorbed into the trace soft constraint for convenience [in prac-
tice, the transmit power constraint in (24) will be dominated by 
the trace shaping constraint, which motivates the absence in (24) 
of an explicit power constraint as given in (5)]. 

NASH EQUILIBRIA: EXISTENCE AND UNIQUENESS 
We can derive the properties of the Nash equilibria of Gsoft similarly 
to what we did for game Gnull. For any q [ V, define the tall 
matrix Uq as Uq ! Gq

[Uq, introduce the semiunitary matrix Uq
' 

orthogonal to Uq, and the set of modified channels Hrq, defined as 

 Hrq5HrqGr
[H

 Ur
', 4r, q [ V. (25) 

Finally, to write the Nash equilibria in a convenient form, we 
introduce the modified waterfilling operator WFq, defined as 

 WFq 1X 2 ! UX 3mq, XI2DX
21 40Pq

peak

UX
H,  (26)

where UX and DX are defined as in (15), 3x 4ab is the projection onto 3a,  b 4 (i.e., 3x 4ab5 a if x # a, 3x 4ab5 x if a # x # b, and 3x 4ab5 b 
if x $ b) and is applied component-wise, and mq, X . 0 is the water-
level chosen to satisfy either the trace or the peak power constraint 

with equality [see, e.g., [48] for practical algorithms to compute the 
waterlevel mq, X in (26)]. Using the above definitions, we can write the 
best response of each player q, given Q2q f 0, as [46] 

 Tq 1Q2q 2 ! Gq
[H

 Uq
'WFq 1Hqq

H R2q
21 1Q2q 2Hqq 2Uq

'H Gq
[, (27)

showing that the optimal transmission strategy of each user leads 
to a diagonalizing transmission with a proper power allocation, 
after pre/postmultiplication by matrix Gq

[H
  Uq
'. Thus, even in the 

presence of soft constraints, the optimal transmission strategy of 
each user q, given the strategies Q2q of the others, can be effi-
ciently computed via a MIMO  waterfilling-like solution. Note that 
the best response in (27) satisfy the null constrains, since 
Uq

HGq
[H

  Uq
'5 0 and thus Uq

HQq
*5 0 for all q. 

The Nash equilibria of Gsoft can be written as a fixed-point equa-
tion of the best response mapping Tq 1Q 2  like (17), which always 
exist, for any set of channel matrices and null/soft shaping con-
straints. As far as the uniqueness of the NE is concerned, similar 
sufficient conditions to (C1)–(C2) can be obtained: it is sufficient 
to replace the original channel matrices H|rq with the modified 
channels Hrq defined in (25) [46]. 
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[FIG5] Performance of games Gnull and G` in terms of Nash 
equilibria for the CR MIMO system given in Figure 4. (a) Average 
sum-rate at the NE versus the normalized intra-pair distance 
d [ (0, 1) for d5 0.5; (b) Outage sum-rate for both games Gnull 
(plus-mark dashed-dot blue line curves) and G` (circle-mark solid 
red line curves).
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DISTRIBUTED ALGORITHMS 
Similarly to games Gnull and Ga, the Nash equilibria of game Gsoft 
can be reached using the asynchronous IWFA algorithm given in 
Algorithm 1, based on the mapping Tq 1Q2q 2  defined in (27). 
Observe that such an algorithm has the same nice properties of 
the algorithm proposed to reach the Nash equilibria of game Gnull, 
such as low complexity, distributed and asynchronous nature, and 
fast convergence behavior. Moreover, thanks to the game theoreti-
cal formulation including null and/or soft-shaping constraints, the 
algorithm does not suffer of the main drawback of the classical 
sequential IWFA [14], [24], [25], i.e., the violation of the tempera-
ture-interference limits [3]. As for games Gnull and Ga, under con-
ditions guaranteeing the uniqueness of the NE, the asynchronous 
MIMO IWFA based on the mapping in (27), asymptotically con-
verges to the NE, for any set of feasible initial conditions, and 
updating schedule [46]. 

COMPETITIVE RESOURCE SHARING BASED ON VI WITH 
GLOBAL FLEXIBLE INTERFERENCE CONSTRAINTS
We consider now the design of CR system in (4), including the 
global interference constraints in (10), instead of the conserva-
tive individual constraints as in the previous section. For the 
sake of simplicity, we focus here only on block transmissions 
over SISO frequency-selective channels. It is well known that, 
in such a case, multicarrier transmission is capacity achieving 
for large block-length [38]. This allows the simplification of 
the system model in (4), since each channel matrix Hrq 
becomes a N3N  Toeplitz circulant matrix with eigendecom-
position Hrq 

5FDrqFH, where F is the normalized IFFT matrix, 
i.e., 3F 4ij ! e j2p1i2121 j212/N/"N  for i, j5 1, c, N, N  is the 
length of transmitted block, Drq5 diag 1 5Hrq 1k 2 6k51

N 2  is the 
diagonal matrix whose kth diagonal entry is the frequency-re-
sponse of the channel between source r and destination q at 
carrier k, and Rnq

5 diag 1 5sq
2 1k 2 6k51

N 2 . 
Under this setup, the strategy of each secondary user q 

becomes the power allocation pq5 5pq 1k 2 6k51
N  over the N carriers 

and the payoff function in (7) reduces to the information rate over 
the N parallel channels 

 rq 1pq, p2q 2 5aN
k51

log°11
0Hqq 1k 2 0 2 pq 1k 2

sq
2 1k 21a

r2q

0Hrq 1k 2 0 2 pr 1k 2 ¢ . (28) 

Local power constraints and global interference constraints are 
imposed on the secondary users. The admissible strategy set of 
each player q associated to local power constraints is then 

 Pq ! e p :a
N

k51
p 1k 2 # Pq,   0 # p # pq

maxf ,  (29) 

where we also included possibly (local) spectral mask constraints 
pq

max5 1pq
max 1k 2 2 k51

N  [the vector inequality in (29) has to be 
intended component-wise]. The global interference constraints in 
(10) impose a upper bound on the value of the per-carrier and total 
interference (the temperature-interference limit [3]) that can be 

tolerated by each primary user. For the sake of simplicity, here, we 
focus only on per-carrier interference constraints imposed by each 
primary user p5 1, c, P (both per-carrier and total interference 
constraints are considered in [49]): 

 a
Q

q51

0Gqp 1k 2 0 2 pq 1k 2 # Pp,k
peak,  4k5 1, c, N,  (30) 

where Gqp 1k 2  is the channel transfer function between the trans-
mitter of the qth secondary user and the receiver of the pth pri-
mary user, and Pp,k

peak is the maximum interference over subcarrier 
k tolerable by the pth primary user. These limits are chosen by 
each primary user, according to his QoS requirements. 

The aim of each secondary user is to maximize his own rate 
rq 1pq, p2q 2  under the local power constraints in (29) and the addi-
tional global interference constraints in (30). The  interference 
constraints however introduce a coupling among the admissible 
power allocations of all the players, meaning that the secondary 
users are not allowed to choose their power allocations individu-
ally. To keep the optimization as decentralized as possible while 
imposing global interference constraints, the proposed idea is to 
introduce a pricing mechanism, controlled by the primary users, 
through a penalty in the payoff function of each player, so that the 
best-response power allocation of each secondary user (and thus 
the interference generated by all the secondary users) will depend 
on these prices. The challenging goal is then to find the proper 
decentralized pricing mechanism that guarantees the interference 
constraints to be satisfied while the secondary users reach an equi-
librium. Stated in mathematical terms, we have the following NE 
problem [49]: 

 
1GVI 2 :

 

maximize
pq$0

rq 1pq, p2q 2 2 a
P

p51
a
N

k51
 lp,k

peak |Gqp 1k 2 |2 pq 1k 2
subject to pq [ Pq

 
(31) 

for all q [ V, where the prices lp
peak5 5lp,k

peak6k51
N  are chosen 

such that the following complementary conditions are satisfied: 

 0 # lp,k
peak ' Pp,k 

peak2 a
Q

q51
 |Gqp 1k 2 |2 pq 1k 2 $ 0,

     4p5 1, c, P,  4k5 1, c, N, (32)

where the compact notation 0 # a ' b $ 0 means a # b5 0, 
a $ 0, and b $ 0. These constraints state that the per-carrier 
interference constraints must be satisfied together with nonnega-
tive pricing; in addition, they imply that if one constraint is trivi-
ally satisfied with strict inequality then the corresponding price 
should be zero (no punishment is needed in that case).

VI REFORMULATION 
Due to the global interference constraints, the coupling among 
the strategies of the players of GVI presents a new challenge for 
the analysis of this class of Nash games that cannot be 
addressed using results from game theory or game theoretical 
models proposed in the literature [15]–[19], [25]. For this 
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 purpose, we need the framework given by the more advanced 
theory of finite-dimensional VIs [26], [27] that provides a satis-
factory resolution to the game GVI, as detailed next. Define the 
joint admissible strategy set of game GVI as 

 K ! P d e p :a
Q

q51
 |Gqp 1k 2 |2 pq 1k 2 # Pp,k

peak,

  4 p5 1, c, P,  k5 1, c, N f , 

(33) 

with P5P1 3c3 PQ, and the vector function F 1p 2
 F 1p 2  !  ° F1 1p 2

(
FQ 1p 2 ¢ ,  where each Fq 1p 2  !  2=pq

rq 1pq,  p2q 2
    

(34)

and =pq
rq 1pq,  p2q 2  denotes the gradient of the payoff function 

rq 1pq,  p2q 2  with respect to pq. It can be shown that solving the 
game GVI is equivalent to solving the VI problem defined by the 
pair 1K, F 2 , which is to find a vector p* [ K such that [49] 

 1  p2 p* 2T F 1p* 2  $  0, 4 p [  K. (35) 

Such an equivalence means that if p* is a solution of the VI 1K, F 2 , 
then there exists a set of prices l*5 1lp

* 2 p51
P $ 0 such that 1p*, l* 2  is an equilibrium pair of GVI; conversely if 1p*, l* 2  is an 

equilibrium of GVI, then p* is a solution of the VI 1K, F 2  [49]. 
Using the above equivalence, we can now study properties of game 
GVI by focusing on the VI equivalent formulation in (35) and using 
the mathematical framework developed for this theory [26], [27]. 

EQUILIBRIUM SOLUTIONS OF GVI: EXISTENCE 
AND UNIQUENESS 
To rewrite the solutions to GVI in a convenient form, we introduce, 
for each q, the waterfilling-like mapping wf q, defined for any given 
p2q $ 0 and l $ 0 as 

 3wfq
1p2q;l 2 4k !  

 £ 1
mq1gq 1k; l 2 2 sq

2 1k 2 1 a r2q
|Hrq 1k 2 |2pr 1k 2

|Hqq 1k 2 |2 §
0

pq
max1k2

     (36)

with k5 1, c, N, where gq 1k; l 2 5 gP
p51|Gqp 1k 2 |2 lp,k

peak and 
mq $ 0 is chosen to satisfy the power constraint gN

k51 3wfq 1p2q; l 2 4k # Pq (mq5 0 if the inequality is strictly satisfied). 
Existence and uniqueness conditions of a solution to GVI 

follows from those of the VI: Game GVI always admits an NE for 
any set of power and interference constraints, since the 
VI 1K, F 2  does (because the set K is convex and compact and 
the function F 1p 2  is continuous in p on K). Moreover, given 
the set of the optimal prices l̂ 5 5l̂p

peak6p51
P , the optimal power 

allocation vector p* 1 l̂ 2 5 1pq
* 1 l̂ 2 2 q51

Q  of the secondary users at 
the NE of game GVI is the solution to the following vector 
waterfilling-like fixed-point equation: 

 pq
* 1 l̂ 2 5wfq 1p2q

* 1 l̂ 2 ; l̂ 2 , 4q [ V. (37) 

with wfq defined in (36). 
Invoking uniqueness results of VI [27], we obtain sufficient con-

ditions guaranteeing the uniqueness of the optimal power alloca-
tions p* of game GVI. For example, the NE p* of GVI is unique if the 
two following set of conditions are satisfied (more general condi-
tions are given in [49]): 

Low-received MUI:

 a
r2q

max
k
e 0Hrq 1k 2 0 20Hrr 1k 2 0 2 # innrrq 1k 2 f , 1, 4q [ V,  (C5) 

Low-generated MUI:

 a
q2r

max
k
e 0Hrq 1k 2 0 20Hrr 1k 2 0 2 # innrrq 1k 2 f , 1, 4r [ V,   (C6) 

where the interference-plus-noise to noise ratios innrrq 1k 2  are 
defined as 

 innrrq 1k 2 ! sr
2 1k 2 1g t 0Htr 1k 2 0 2 pt

max 1k 2
sq

2 1k 2 . (38) 

Conditions (C5)–(C6) have the same nice interpretations of (C1)–
(C4): The uniqueness is guaranteed if the interference among the 
secondary users is not too high, in the sense specified by (C5)–(C6). 

DISTRIBUTED ALGORITHMS 
To obtain efficient algorithms that distributively compute both the 
optimal power allocations of the secondary users and prices, we can 
borrow from the wide literature of solutions methods for VIs [27]. 
Many alternative algorithms have been proposed in [49] to solve 
game GVI that differ in: i) the signaling among primary and second-
ary users needed to be implemented, ii) the computational effort; 
iii) the convergence speed, and iv) the convergence analysis. As an 
example, we describe two of these algorithms. 

The first algorithm we provide is based on the Projection 
Algorithm with variable steps (for the sake of simplicity, here we 
use a constant step size) [27, Alg. 12.1.4] and is formally 
described in Algorithm 2, where the waterfilling mapping wfq is 
defined in (36). 

ALGORITHM 2: PROJECTION ALGORITHM 
WITH CONSTANT STEP SIZE 
Data : l102 $ 0, and the step size t . 0.
1: Set n5 0; 
2: repeat 

3: Given l1n2, compute p* 1l1n2 2  as the solution to the fixed-point 

equation 

4: pq
* 1l1n2 2 5wfq 1p2q

* 1l1n2 2 ; l1n2 2 , 4q [ V (39) 
5: Update the price vectors: for all p5 1, c, P, and k5 1,

c, N, compute 
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6:   lp,k
1n1125 clp,k

1n2 2t aPp,k
peak2 a

Q

q51
|Gqp 1k 2 |2 pq

* 1k; l1n2 2 b d 1, (40) 

7: until the prescribed convergence criterion 
is satisfied.

The algorithm can be interpreted as follows. In the main loop, 
at the nth iteration, each primary user p measures the received 
interference generated by the secondary users and, locally and 
independently from the other primary users, adjusts his own set of 
prices lp

1n2 accordingly, via a simple projection scheme [see (40)]. 
The primary users broadcast their own prices lp

1n2’s to the second-
ary users, who then play the game in (31)  keeping fixed the prices 
to the value l1n2. The Nash equilibria of such a game can be 
reached by the secondary users using any algorithm falling in the 
class of asynchronous IWFA as described in Algorithm 1 (e.g., 
simultaneous or sequential) and based on mapping wf5 1wfq 2 q[V 
in (37). The interesting result proved in [49] is that, both loops—
the outer loop performed by the primary users and the inner loop 
based on iterative waterfilling-like algorithm performed by the sec-
ondary users—are guaranteed to asymptotically converge if, e.g., 
conditions (C5)–(C6) are satisfied and the step size t . 0 is chosen 
arbitrarily but smaller than a prescribed value (given in [27]). 

The second algorithm we provide is Algorithm 3 that differs 
from Algorithm 2 in the fact that there is only a major loop in 
which the secondary and the primary users update their decisions 
at the same level either sequentially or simultaneously (in the ver-
sion described in Algorithm 3, the update is simultaneous). Thus, 
in Algorithm 3, the primary users adjust their prices as soon as the 
secondary users complete one iteration of their nonequilibrium 
allocation updates, rather than waiting for a full equilibrium 
response, as in Algorithm 2. 

ALGORITHM 3: PROXIMAL REGULARIZATION ALGORITHM 
Data: l102 $ 0, pq5 pq

102 [ Pq for all q5 1, c, Q, and z . 0. 
1: Set n5 0; 
2: repeat 
3: Given l1n2, sequentially for q5 1, c, Q, compute 

pq
1n112 1l1n2 2  as 

4: pq
1n112 1l1n2 2 5wfq 1p1

1n112, c, pq21
1n112, pq11

1n2 , c, pQ
1n2; l1n2 2 , 

 (41) 
5: Update the price vectors: for all p5 1, c, P, and k5 1, 

c, N, compute 

6: lp, k
1n1125 clp, k

1n2 2z21 aPp, k
peak2 a

Q

q51
|Gqp 1k 2 |2 pq

1n112 1k; l1n2 2 b d 1,

 (42) 
7: until the prescribed convergence criterion 

is satisfied.

Even though the per-carrier and global interference con-
straints impose a coupling among the feasible power allocation 
strategies of the secondary users, the equilibrium of game GVI 
can be reached using iterative algorithms that are fairly distrib-
uted with minimum signaling from the primary to the second-
ary users. In fact, the primary users, to update their prices, only 
need to measure the interference generated by the secondary 

users, which can be performed locally and independently from 
the other primary users. Regarding the secondary users [see 
(36)], once gq 1k; l 2s are given, the optimal power allocation can 
be computed locally by each secondary user, since only the mea-
sure of the received MUI over the N  subcarriers is needed. 
However, the computation of gq 1k; l 2 s requires a signaling 
among the primary and secondary users: At each iteration, the 
primary users have to broadcast the new values of the prices and 
the secondary users estimate the gq 1k; l 2s. Note that, under the 
assumption of channel reciprocity, the  computation of each 
term |Gqp 1k 2 |2 lp,k

peak in gq 1k; l 2  does not requires the estimate 
from each secondary user of the (cross-)channel transfer func-
tions between his transmitter and the primary receivers. 

CONSERVATIVE IWFA VERSUS FLEXIBLE IWFA 
As a numerical example, we compare three different approaches, 
namely the VI-based formulation (Algorithms 2 and 3), the clas-
sical IWFA [14], [24], and the IWFA with individual interference 
constraints (i.e., a special case of Algorithm 1 applied to game 
Gsoft) [17]–[18], in terms of interference generated at the pri-
mary user receivers and the achievable sum-rate from the sec-
ondary users; we refer to these algorithms as flexible IWFA, 
classical IWFA, and conservative IWFA, respectively. As an 
example, we consider a CR system composed of six secondary 
links randomly distributed within a hexagonal cell and one pri-
mary user (the BS at the center of the cell). The primary user 
imposes a constraint on the maximum interference that can tol-
erate. For simplicity in our description, we assume that the pri-
mary user imposes a constant interference threshold over the 
whole spectrum, i.e., Pp,k

peak5 0.01 for all k5 1, c, N  [see 
(30)]. The individual interference constraints used in the con-
servative IWFA are chosen so that all the secondary users gener-
ate the same interference level at the primary receiver and the 
aggregate interference satisfies the imposed interference thresh-
old. In Figure 6(a), we plot the power spectral density (PSD) of 
the interference generated by the secondary users at the receiver 
of the primary user, obtained, for a given channel realization, 
and distribution of the secondary users, using the flexible IWFA 
and the conservative IWFA. As benchmark, we also include the 
PSD of the interference generated by the classical IWFA [14], 
[24]. We clearly see from the picture that while classical IWFA 
violates the interference constraints, both conservative and flex-
ible IWFAs satisfy them but the global interference constraints 
impose less stringent conditions on the transmit power of the 
secondary users that those imposed by the individual interfer-
ence constraints based on the spectral masks. However, this 
comes at the price of some signaling from the primary to the 
secondary users. 

Thanks to less stringent constraints on the transmit powers 
of the secondary users, the flexible IWFA is expected to exhibit a 
much better performance than the conservative IWFA also in 
terms of rates achievable by the secondary user. Figure 6(b) 
confirms this intuition, where we plot the average sum-rate of 
the secondary users achievable by the conservative IWFA and 
the flexible IWFA as a function of the maximum tolerable 
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 interference at the primary receiver, within the same setup 
described above. The curves are averaged over 500 random i.i.d. 
Gaussian channel realizations. 

CONVERGENCE SPEED 
In Figure 7(a), we plot the worst-case violation of the interfer-
ence constraint achieved by Algorithms 2 and 3 versus the 
number of iterations of the outer loop, for a CR system as in 
Figure 6, composed now of 15 active secondary links. 
Interestingly, for the example considered in the figure, both 
Algorithms 2 and 3 experience the same convergence behavior 
(provided that the step-size is properly chosen) and converge 
reasonably fast. Thus, in such a scenario, Algorithm 3 is pre-
ferred to Algorithm 2, since it requires less iterations among 
the secondary users. Finally, in Figure 7(b), we compare the 
performance in terms of convergence speed of the sequential 
and simultaneous IWFA based on the waterfilling best response 
with pricing defined in (36), for a given price tuple l and chan-
nel realization. These algorithms are used to compute the 
(unique) solution of the fixed-point equation (39) in the inner 
loop of Algorithm 2. In the figure, we plot the rate evolution of 
the secondary users’ links corresponding to the two cited algo-
rithms as a function of the iteration index. To make the figure 
not excessively overcrowded, we plot only the curves of three 
out of 15 links. As expected, the sequential IWFA is slower than 
the simultaneous IWFA, especially if the number of active sec-
ondary users is large, since each user is forced to wait for all 
the users scheduled in advance, before updating his own power 
allocation. The same qualitative behavior has been observed for 
different channel realizations and value of prices. The fast con-
vergence behavior of the IWFAs in the inner loop provides an 
intuitive explanation of why Algorithms 2 and 3 have been 
experienced to have almost the same convergence speed 
[Figure 7(a)], provided that the step-size is properly chosen: 
After the first round of the IWFA in the inner loop, the second-
ary users are expected to be quite close the NE of the inner loop 
game already. 

CONCLUSIONS AND FUTURE DIRECTIONS 
In this article, we have proposed different NE models to for-
mulate and solve in a distributed way resource allocation prob-
lems in CR systems. We have seen how noncooperative game 
theory and the more general VI theory provide the natural 
framework to address and solve some of the challenging issues 
in CR, namely: 1) the establishment of conditions guarantee-
ing that the dynamical interaction among cognitive nodes, 
under different constraints on the transmit spectral mask and 
on interference induced to primary users, admits a (possibly 
unique) equilibrium; and 2) the design of decentralized algo-
rithms able to reach the equilibrium points, with minimal 
coordination among the nodes. The proposed algorithms differ 
in the trade-off between performance (in terms of information 
rate) achievable by the secondary users and the degree of 
information to be exchanged between the primary and the sec-
ondary users. Thus, they are valid candidates in the two main 

paradigms of CR systems, namely the common model and the 
spectral leasing approach. Motivated by the need of low-com-
plexity distributed algorithms for CR applications, we 
restricted ourselves to discuss some fundamental aspects of 
noncooperative games, leaving the large area of cooperative 
game theory out of the scope of this article. Tutorial papers on 
cooperative game theory based on Nash bargaining problem 
and coalition games applied to communication systems are 
[11], [22], and [50], respectively. 

The NE points derived in this article were dictated by the 
need of finding totally decentralized algorithms with minimal 
coordination among the nodes. However, the NE points may 
not be Pareto efficient. This raises the issue of how to move 
from the NE towards the Pareto-optimal tradeoff surface, still 
using a decentralized approach. Many directions can be 
exploited to improve the utility region, such as noncoopera-
tive games incorporating pricing mechanisms. Prices are 
indeed introduced as an instrument to induce a distributed 
incentive for the players to reach more socially efficient NE 
points. Toward this goal, many heuristics have been proposed 

[FIG6] Comparison of IWFA algorithms: Classical IWFA, 
conservative IWFA, and flexible IWFA. (a) PSD of the interference 
profile at the primary user’s receiver. (b) Achievable average 
sum-rate versus the interference constraint.

1 5 10 15 20 25 30 35 40 45 50 55 60 64
0

0.005

0.01

0.015

0.02

0.025

Carrier

In
te

rf
e
re

n
c
e
 L

e
ve

l

Interference

Limit

Classic IWFA
Conservative IWFA
Flexible IWFA 

Classic IWFA

Conservative IWFA
Flexible IWFA 

(a)

Interference
Constraints

Violated

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Ppeak

S
u
m

-R
a
te

 (
b
/c

u
)

(b)

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on September 4, 2009 at 23:01 from IEEE Xplore.  Restrictions apply. 

gesualdoscutari
Text Box



IEEE SIGNAL PROCESSING MAGAZINE   [122]   SEPTEMBER 2009

in the literature (see, e.g., [49] and [51]–[52] and references 
therein), but a formal study of the impact of the prices on the 
performance of the  corresponding NE point remains, to-date, 
a formidable open problem. Other game theoretical models 
worth of investigating are those coming from dynamic games 
[53], for example, in the form of repeated games, where the 
players learn from their past choices. An early application of 
repeated games to the spectrum sharing problem over unli-
censed bands is [24]. However, the (nontrivial) extension to 
hierarchical CR networks is, to-date, missing One further 
direction worth of being exploited to improve the utility 
region is to consider some refinements of the NE concept as, 
e.g., in [36]–[37]. 

In this article, we assumed perfect channel state information 
and perfect sensing from the secondary users. An interesting 
extension of the presented approach consists in taking into 
account the effects of channel and spectrum sensing errors and 
developing robust transmission strategies, based on either 
deterministic or random access schemes. This is particularly 
relevant in CR systems because the strategy adopted by the cog-
nitive users may be more or less aggressive depending on the 
reliability of their channel/spectrum sensing. 
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[FIG7] Example of convergence speed. (a) Worst-case violation 
of the interference constraints achieved by Algorithms 2 and 3 
(flexible IWFA).  (b) Secondary users’ rates versus the iteration 
index achieved in the inner loop of Algorithm 2 by the 
sequential and the simultaneous IWFA with pricing.
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