Hexagonal micro-pillar cavities: multimode resonances and open-loop resonance linewidth broadening

Ning Ma, Frankie Kin Lam Tung, Shing Fai Lui, Andrew W. Poon
Dept. of Electrical and Electronic Engineering, Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong, China

ABSTRACT

We report our proof-of-principle experiment and modeling of hexagonal micro-pillar (µ-pillar) cavities. A commercial hexagonal silica fiber (125µm plane-to-plane) was side-coupled perpendicularly with a Gaussian beam, thus the fiber acted as a µ-pillar cavity. We observed multimode resonances with typical Q ≈ 2,500 in the tangential directions that are ≈ 120° to the input-coupling cavity sidewall. The observed free spectral range (FSR) ≈ 4.5 nm is consistent with a six-bounce cavity round-trip length. By using wavefront-matching concept, the observed multimode resonances can be attributed to open-loop trajectories. The multiple wavefront-matched open-loop trajectories of the same ray incident angle can result in resonance linewidth broadening. We employed a k-space representation to calculate the hexagonal cavity normal mode locations.

Keywords: micro-pillar cavities, optical resonances, hexagonal, linewidth broadening, WDM add/drop filters

1. INTRODUCTION

Optical µ-pillar cavities have attracted recent interest for applications in integrated photonics due to their compact size (10 - 100 µm lateral dimensions and ≈ µm height) and high-Q resonances. Light can be partially confined by nearly total internal reflection (TIR) at the µ-pillar resonator sidewall. Optical resonances can be excited only when the cavity round-trip wavefronts are wavefront-matched. The µ-pillar cavity can be laterally or vertically coupled with waveguides, and circular µ-pillar wavelength-division multiplexing (WDM) channel add/drop filters have been demonstrated [1, 2, 3]. However, the main drawback of the laterally coupled circular ring and disk micro-cavities is the short interaction length between the curved cavity sidewall and the straight waveguide sidewall. Such short interaction length imposes a sub-micrometer air-gap spacing for evanescent coupling. In order to improve the lateral coupling length, channel add/drop filters based on race-track shaped resonators [4] and polygonal µ-pillar resonators have been recently proposed [5].

The key advantages of the polygonal µ-pillar cavities are two-fold: (1) the entire flat cavity sidewall allows a longer lateral coupling length, and (2) the same cavity modes can be input and output-coupled along the sidewall. Therefore, a wide air-gap spacing can be tolerated for evanescent coupling between the cavity and the laterally coupled straight waveguides. Recently, multimode resonances in square-shaped µ-pillar cavities were experimentally observed by Gaussian beam coupling [6]. Hexagonal microlasers have been reported [7].
In this paper, we report our recent measurement of optical resonances in the elastic-scattering spectra of hexagonal \(\mu \)-pillar cavities, using Gaussian beam tangentially coupled along the cavity sidewall. The observed multimode resonances can be attributed to wavefront-matched six-bounce round-trip trajectories that need not be closed after each round trip. The family of wavefront-matched open-loop trajectories that are at the same incident angle but different coupling positions can result in resonance linewidth broadening. We employed a k-space representation to calculate the hexagonal cavity resonance locations.

2. HEXAGONAL MICRO-CAVITIES MODELING: WAVEFRONT-MATCHING AND K-SPACE

2.1 Ray optics with wavefront-matching

Figure 1 (a) shows typical hexagonal closed-loop trajectories with an incident angle \(\theta = 60^\circ \) (solid and dashed lines). The trajectories have the same round-trip length of \(3L \), where \(L \) is the distance between two parallel sidewalls, and thus have the same cavity modes. Trajectories with \(\theta \neq 60^\circ \) do not close upon themselves in each six-bounce round-trip. Figure 1 (b) illustrates a typical six-bounce open-loop trajectory with an incident angle \(\theta \neq 60^\circ \), and a complementary incident angle \((120^\circ - \theta) \) at the adjacent sidewall.

![六边形微腔模型：波前匹配和k空间](image)

In order to partially confine the six-bounce trajectories by TIR, \(\theta \) needs to satisfy \(\theta_c < \theta < (120^\circ - \theta_c) \), where the critical angle \(\theta_c = \sin^{-1} (1/n) \), and \(n \) is the cavity refractive index contrast. For silica in 1550nm wavelength, \(n \approx 1.44 \) \((\theta_c \approx 44^\circ) \), and thus \(44^\circ < \theta < 76^\circ \) for six-bounce TIR trajectories. We only consider six-bounce trajectories because three-, four-, and five-bounce trajectories are not confined by TIR in silica hexagonal cavities.

Here, we review the wavefront-matching concept [6] in the context of hexagonal cavities. Only the round-trip trajectories that have the incident wavefront matched with the round-trip wavefront can excite optical resonances. The wavefront-matched trajectories do not need to be closed upon each round trip, as illustrated in Figure 1 (b). The dashed line that is perpendicular to ray GH and AB represents the wavefront. The ray AB and ray GH are wavefront-matched.

Following the discussion of multimode resonances in square \(\mu \)-pillar cavities in [6], we believe such wavefront-matched open-loop trajectories can result in multimode resonances in hexagonal cavities. The optical path length \(L_h \) for a wavefront-matched six-bounce trajectory (denoted as ABCDEFGH in (b)) is as follows:

\[
L_h = n \cdot \text{Polygon}_{ABCDEFGH} = n \cdot 3L \cdot \sin(\theta + 30^\circ)
\]

We remark that \(L_h \) is independent of the trajectory starting position as long as the open-loop trajectory is wavefront-matched, and consequently \(L_h \) is fixed for each open-loop wavefront-matched round-trip. The FSR can be approximated as follows:
2.2 Open-loop resonance linewidth broadening

However, the number of wavefront-matched open-loop round trips N of a fixed θ depends on the ray starting position. Figure 2 (a) – (i) show an assortment of the trajectories for selected θ and the starting positions. For example in Figure 2 (a), the ray starts at position P on sidewall AB with θ = 56.8°. We denote the coupling (starting) position $x = \frac{BP}{BA} = 0.9$. The ray reaches the sidewall CD (instead of the adjacent sidewall BC) and escape refractively (i.e. N=0) according to Snell’s law because the incident angle at sidewall CD is less than θ_c. We term this as the walk-off condition for the
open-loop trajectories. We consider \(x \) between 0.1 and 0.9 only because practical hexagonal \(\mu \)-pillar cavities can have rounded corners. Only a limited span of \(\theta \) within the TIR confinement can make wavefront-matched round trips before walk-off and the subsequent refractive escape. For all \(\theta < 53.5^\circ \), \(N = 0 \).

Figure 2 (b) shows the open-loop trajectory for \(\theta = 56.8^\circ \) and \(x = 0.5 \). The ray can reach four sidewalls before walk-off and the refractive escape at the input coupling sidewall. Figure 2 (c) illustrates the open-loop trajectory with the same \(\theta \) and \(x = 0.1 \) that has \(N = 1 \) before the ray eventually walks off at the input coupling sidewall. Figure 2 (d), (e), (f) illustrate that for \(\theta = 58.7^\circ \), \(N \) varies from 0 to 3. Figure 2 (g), (h), (i) show that for \(\theta = 59.5^\circ \), \(N \) varies from 1 to 10. \(N \) becomes infinitely large when \(\theta \) approaches 60°.

The different \(N \) allows different cavity lifetime (before refractive escape) for the same \(L_h \) at different \(x \). When the hexagonal cavity is input coupled along the entire cavity sidewall, the same mode will see a distribution of cavity lifetimes, and therefore result in a broadened resonance linewidth. Figure 3 illustrates schematically the open-loop linewidth broadening due to the superposition of different \(Q \)'s (cavity lifetimes) at the same wavelength.

![Figure 3. Schematic of the open-loop resonance linewidth broadening due to the superposition of different \(Q \)'s at the same \(\lambda \).](image)

2.3 k-space

The resonance modes of a hexagonal cavity can be represented by the normal modes in \(k \)-space. We assume that the hexagonal cavity is composed of three pairs of Fabry-Perot mirrors (denoted as \(\text{aa'} \), \(\text{bb'} \), and \(\text{cc'} \)) with a plane-to-plane distance \(L \), as illustrated in Figure 4 (a). In the Fabry-Perot cavity \(\text{aa'} \), the \(k \)-vector \(k_a \) can be discretized as \(m_a \pi/L \), where \(m_a \) is an integer (i.e., 0, 1, 2). Likewise, the Fabry-Perot cavities \(\text{bb'} \) and \(\text{cc'} \) have \(k \)-vectors \(k_b \) and \(k_c \) discretized as \(m_b \pi/L \) and \(m_c \pi/L \), respectively, where \(m_b \) and \(m_c \) are integers (i.e., 0, 1, 2).

Using the \((k_x, k_y, k_z)\) bases, we define the orthogonal \(k \)-space coordinates \((k_x, k_y)\) (shown in Figure 4 (a)) as follows:

\[
\begin{align*}
 k_x &= \frac{\sqrt{3}}{2} \cdot (k_b + k_c) = \frac{\sqrt{3}}{2} \cdot \frac{\pi}{L} \cdot (m_b + m_c) = \frac{\sqrt{3}}{2} \cdot \frac{\pi}{L} \cdot m_x \\
 k_y &= k_a + \frac{1}{2} k_b - \frac{1}{2} k_c = \frac{1}{2} \cdot \frac{\pi}{L} \cdot (2m_b - m_c) = \frac{1}{2} \cdot \frac{\pi}{L} \cdot m_y
\end{align*}
\]

(3)

(4)

where \(m_x = (m_b + m_c) \), and \(m_y = (2m_b - m_c) \) are integers. The hexagonal cavity normal mode wavelengths can be calculated as follows:

\[
 k^2 = \left(\frac{2\pi n}{\lambda} \right)^2 = k_x^2 + k_y^2 = \left(\frac{\pi}{2L} \right)^2 \cdot (3m_x^2 + m_y^2)
\]

(5)
where λ is the free-space wavelength of the normal mode (m_x, m_y). Here, $\tan \theta = k_x / k_y$, where θ is the ray incident angle as shown in Figure 1(a). Since k_x / k_y is discretized, only specific trajectories will give rise to normal modes.

Figure 4. (a) Schematic of a hexagonal cavity composed of three pairs of Fabry-Perot mirrors aa', bb' and cc'. k-vectors k_a, k_b, k_c for each of the Fabry-Perot mirrors are defined. k-space coordinates in k_x and k_y is illustrated. (b) Schematic k-space representation of a large-sized hexagonal micro-cavity. The discrete modes are denoted as crosses. The wavelength range ($\lambda_{\text{short}}, \lambda_{\text{long}}$) and the TIR confinement angle range [$\tan \theta_c, \tan (120^\circ - \theta_c)$] are emphasized. The $\tan 60^\circ$ line is shown for reference.

Figure 5. (a) Calculated (m_x, m_y) modes of an L=125µm hexagonal micro-cavity ($n=1.44$) with $\theta = [47.2^\circ, 50.9^\circ]$. The λ range is $[1530nm, 1560nm]$. Two sets of modes are labeled as A, B, C and A', B' and C'. The dashed lines represent $\tan 48.4^\circ$ and $\tan 49^\circ$.
Figure 4 (b) shows the k-space schematic in (k_x, k_y) solutions for a large-sized hexagonal micro-cavity for a wavelength range (λ_short, λ_long) and the angle region [θ_c=44º, 120º-θ_c=76º]. All the modes except for θ=60º can be attributed to wavefront-matched six-bounce open-loop trajectories. Hence, large-sized hexagonal cavities are multi-mode.

![k-space schematic](image)

Figure 5 (a) shows the calculated (m_x, m_y) modes between [47.3°, 50.9°] for an L=125µm hexagonal micro-cavity (n=1.44) in 1530nm – 1560nm wavelength range. Each mode (with degeneracy) is denoted as a dot. Figure 5 (b) shows the k-space modes in a θ-spectrum (θ vs. λ plot) in 1545nm – 1555nm range. Two sets of modes labeled as A, B, C and A', B', C' corresponding to θ ≈ 48° - 49.5° are denoted in both Figure 5 (a) and (b). The calculated wavelength spacing between mode A and A' is 4.36nm, 4.41nm for B and B', and 4.39nm for C and C'.

3. FIBER SCATTERING EXPERIMENT

A commercial hexagonal silica fiber was employed in the elastic-scattering experiment to measure hexagonal cavity resonances. The hexagonal fiber (L=125µm) was side-coupled perpendicularly by a Gaussian beam, thus acted as a hexagonal μ-pillar cavity. Figure 6 shows the experimental setup. A Gaussian beam from a wavelength-tunable diode laser (1510nm-1580nm wavelength range, laser linewidth <300 kHz) was weakly focused (by an ≈ f/10 - f/16 lens) tangentially onto the fiber flat sidewall. The estimated beam width was ≈ 30µm - 50µm. The incident polarization was set to be parallel to the fiber axis (TM mode) using a Glan-Taylor polarizer. We tuned the separation between the laser beam and the fiber sidewall in order to excite the cavity modes. The elastic-scattering spectrum was imaged (with an acceptance angle ≈ 4°) from the fiber flat sidewall onto a 62.5µm-core multimode fiber, and then collected by an InGaAs photodiode. A Glan-Taylor analyzer was placed after the imaging lens to measure the TM spectrum. The spectral resolution was ≈ 0.01 nm. The inset shows the top-view of the fiber. The hexagonal fiber plane-to-plane distance was ≈ 125µm ± 4µm. The fiber corners were rounded.
Figure 6. Schematic of the experimental setup. The inset shows the top-view of the hexagonal fiber.

Figure 7. Measured TM-polarized scattering spectrum (1545nm - 1560nm) imaged at \(\approx 120^\circ \) from the laser beam direction. Four sets of modes are labeled as A, B, C, D. The measured FSR is \(\approx 4.5\text{nm} \). The inset shows a schematic of the Gaussian beam (the thick arrow) grazing the hexagonal fiber sidewall and the output was collected at 120° from the Gaussian beam direction (the dashed arrow).
Figure 7 shows the measured TM-polarized elastic-scattering spectrum (1545nm – 1560nm) imaged at ≈ 120˚ ±2˚ from the laser beam direction. The inset shows a schematic of the Gaussian beam coupling experiment. Multimode resonances (denoted as A, B, C, and D) of typical Q ≈ 2,500 were observed. Mode order B has the maximum observed Q ≈ 15,000. The Q’s are expected to be reduced by the open-loop resonance linewidth broadening. The measured FSR is ≈ 4.5nm, consistent with the six-bounce round-trip length (using Eqs. (1) and (2), FSR ≈ 4.44nm).

The measured FSR suggests (m_x, m_y) modes near θ ≈ 49˚ with L = 125µm, as shown in Figure 5 (b). However, according to ray tracing with wavefront matching, we expect N = 0 when θ = 49˚, and thus no resonance should be excited. We remark that when θ > 53.5˚, N becomes non-zero, yet the calculated FSR according to k-space is only (3.32nm-3.92nm). We are currently working on further measurement and modeling to resolve this apparent dilemma.

4. CONCLUSION

In summary, we have experimentally investigated and modeled the optical resonances of hexagonal μ-pillar cavities. Multimode resonances were observed in the elastic-scattering spectra of a 125µm-sized hexagonal silica fiber. The observed FSR is consistent with a six-bounce cavity round-trip length. By using wavefront-matching concept, the observed multimode resonances can be attributed to open-loop round-trip trajectories. The ray-tracing suggests that only when θ approaches 60˚ can large number of wavefront-matched round-trip trajectories occur. The superposition of multiple wavefront-matched open-loop trajectories of the same ray incident angle but different coupling position can result in resonance linewidth broadening. A k-space modeling was employed to calculate the hexagonal cavity normal mode locations. However, the comparison between the measured FSR with the calculated FSR according to the k-space model suggests that the observed modes have θ ≈ 49˚ which do not constitute wavefront-matched trajectories.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support by the Hong Kong University Grant Council (HIA 01/02. EG05), and the Hong Kong Research Grant Council (HKUST6166/02E). Andrew W. Poon’s email address is eeawpoon@ust.hk.

REFERENCES